Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Gene transcription and regulation of oocyte maturation

Karina F. Rodriguez A and Charlotte E. Farin A B
+ Author Affiliations
- Author Affiliations

A North Carolina State University, Department of Animal Science, Box 7621, 231B Polk Hall, Raleigh, NC 27695-7621, USA.

B To whom correspondence should be addressed. email: char_farin@ncsu.edu

Reproduction, Fertility and Development 16(2) 55-67 https://doi.org/10.1071/RD03078
Submitted: 1 August 2003  Accepted: 1 October 2003   Published: 2 January 2004

Abstract

The developmental potential of an embryo is dependent on the developmental potential of the oocyte from which it originates. The process of oocyte maturation is critical for the efficient application of biotechnologies such as in vitro embryo production and mammalian cloning. However, the overall efficiency of in vitro maturation remains low because oocytes matured in vitro have a lower developmental competence than oocytes matured in vivo. Furthermore, oocytes that have been exposed to gonadotropins have greater developmental competence than oocytes matured in the absence of gonadotropins. By understanding the molecular mechanisms underlying gonadotropin-induced maturation, improvement in oocyte maturation technologies may be expected as procedures to manipulate specific factors involved in signalling for resumption of meiosis are identified. The present review will focus on transcriptional mechanisms underlying the maturation of mammalian oocytes in vitro, as well as on the acquisition of oocyte developmental competence. In addition, a working model for the transcriptional control of mammalian oocyte maturation is proposed.

Extra keywords: amanitin, bovine, 5,6-dicholoro-1-β-d-ribofuranosyl-benzimidazole, follicle-stimulating hormone, gonadotropins, meiosis, murine.


Acknowledgments

This work was supported by the US Department of Agriculture (2002-35205-12810), National Institutes of Health (1 R03 HD043875-01) and the North Carolina Agricultural Research Service.


References

Aberdam, E. , Hanski, E. , and Dekel, N. (1987). Maintenance of meiotic arrest in isolated rat oocytes by the invasive adenylate cyclase of Bordetella pertussis.  Biol. Reprod. 36, 530–535.
PubMed |

Albertini, D. F. , Sanfins, A. , and Combelles, C. M. (2003). Origins and manifestations of oocyte maturation competencies. Reprod. Biomed. Online 6, 410–415.
PubMed |

Anderson, E. , and Albertini, D. F. (1976). Gap junctions between the oocyte and companion follicle cells in the mammalian ovary. J. Cell Biol. 71, 680–686.
PubMed |

Blondin, P. , Guibault, L. , Coenen, K. , and Sirard, M. A. (1996). Superovulation can reduce the developmental competence of bovine oocytes. Theriogenology 46, 1191–1203.
Crossref | GoogleScholarGoogle Scholar |

Blondin, P. , Coenen, K. , Guibault, L. , and Sirard, M. (1997). In vitro competence of bovine embryos: developmental competence is acquired before maturation. Theriogenology 47, 1061–1075.
Crossref | GoogleScholarGoogle Scholar |

Blondin, P. , Bousquet, D. , Twagiramungu, H. , Barnes, F. , and Sirard, M. A. (2002). Manipulation of follicular development to produce developmentally competent bovine oocytes. Biol. Reprod. 66, 38–43.
PubMed |

Bordignon, E. , Norin, N. , Durocher, J. , Bousquet, D. , and Smith, L. C. (1997). GnRH improves the recovery rate and the in vitro developmental competence of oocytes obtained by transvaginal follicular aspiration from superstimulated heifers. Theriogenology 48, 291–298.
Crossref | GoogleScholarGoogle Scholar |

Bornslaeger, E. A. , Mattei, P. , and Schultz, R. M. (1986). Involvement of cAMP-dependent protein kinase and protein phosphorylation in regulation of mouse oocyte maturation. Dev. Biol. 114, 453–462.
PubMed |

Bousfield, G. R., Perry, W. M. and  Ward, N. (1994). Gonadotropins: chemistry and biosynthesis In ‘The Physiology of Reproduction’. (Eds. E Knobil and J D. Neill)  pp. 1749–1792. (Raven Press: New York.)

Brevini, T. A. , Lonergan, P. , Cillo, F. , Francisci, C. , Favetta, L. A. , Fair, T. , and Gandolfi, F. (2002). Evolution of mRNA polyadenylation between oocyte maturation and first embryonic cleavage in cattle and its relation with developmental competence. Mol. Reprod. Dev. 63, 510–517.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Brower, P. T. , and Schultz, R. M. (1982). Intercellular communication between granulosa cells and mouse oocytes: existence and possible nutritional role during oocyte growth. Dev. Biol. 90, 144–153.
PubMed |

Bruzzone, R. , White, T. W. , and Paul, D. L. (1996). Connections with connexins: the molecular basis of direct intercellular signaling. Eur. J. Biochem. 238, 1–27.
PubMed |

Buccione, R. , Schroeder, A. C. , and Eppig, J. J. (1990). Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol. Reprod. 43, 543–547.
PubMed |

Byskov, A. G. , Yding Andersen, C. , Hossaini, A. , and Guoliang, X. (1997). Cumulus cells of oocyte-cumulus complexes secrete a meiosis-activating substance when stimulated with FSH. Mol. Reprod. Dev. 46, 296–305.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Canipari, R. (1994). Cell–cell interactions and oocyte growth. Zygote 2, 343–345.
PubMed |

Cao, X. M. , Koski, R. A. , Gashler, A. , McKiernan, M. , Morris, C. F. , Gaffney, R. , Hay, R. V. , and Sukhatme, V. P. (1990). Identification and characterization of the Egr-1 gene product, a DNA-binding zinc finger protein induced by differentiation and growth signals. Mol. Cell. Biol. 10, 1931–1939.
PubMed |

Carabatsos, M. J. , Sellitto, C. , Goodenough, D. A. , and Albertini, D. F. (2000). Oocyte–granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev. Biol. 226, 167–179.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cecconi, S. , D'Aurizio, R. , and Colonna, R. (1996a). Role of antral follicle development and cumulus cells on in vitro fertilization of mouse oocytes. J. Reprod. Fertil. 107, 207–214.
PubMed |

Cecconi, S. , Rossi, G. , De Felici, M. , and Colonna, R. (1996b). Mammalian oocyte growth in vitro is stimulated by soluble factor(s) produced by preantral granulosa cells and by Sertoli cells. Mol. Reprod. Dev. 44, 540–546.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Choi, Y. H. , Carnevale, E. M. , Seidel, G. E. , and Squire, E. L. (2001). Effects of gonadotropins on bovine oocytes matured in TCM-199. Theriogenology 56, 661–670.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cognie, Y. , Benoit, F. , Poulin, N. , Khatir, H. , and Driancourt, M. A. (1998). Effect of follicle size and of the FecB Booroola gene on oocyte function in sheep. J. Reprod. Fertil. 112, 379–386.
PubMed |

Conti, M. , Andersen, C. B. , Richard, F. J. , Shitsukawa, K. , and Tsafriri, A. (1998). Role of cyclic nucleotide phosphodiesterases in resumption of meiosis. Mol. Cell. Endocrinol. 145, 9–14.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Conti, M. , Andersen, C. B. , Richard, F. , Mehats, C. , Chun, S. Y. , Horner, K. , Jin, C. , and Tsafriri, A. (2002). Role of cyclic nucleotide signaling in oocyte maturation. Mol. Cell. Endocrinol. 187, 153–159.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Dalbies-Tran, R. , and Mermillod, P. (2003). Use of heterologous complementary DNA array screening to analyze bovine oocyte transcriptome and its evolution during in vitro maturation. Biol. Reprod. 68, 252–261.
PubMed |

De La Fuente, R. , and Eppig, J. J. (2001). Transcriptional activity of the mouse oocyte genome: companion granulosa cells modulate transcription and chromatin remodeling. Dev. Biol. 229, 224–236.
Crossref | GoogleScholarGoogle Scholar | PubMed |

de la Pena, E. C. , Takahashi, Y. , Katagiri, S. , Atabay, E. C. , and Nagano, M. (2002). Birth of pups after transfer of mouse embryos derived from vitrified preantral follicles. Reproduction 123, 593–600.
PubMed |

Dekel, N. , Lawrence, T. S. , Gilula, N. B. , and Beers, W. H. (1981). Modulation of cell-to-cell communication in the cumulus–oocyte complex and the regulation of oocyte maturation by LH. Dev. Biol. 86, 356–362.
PubMed |

Diatchenko, L. , Lau, Y. F. , Campbell, A. P. , Chenchik, A. , and Moqadam, F. , et al. (1996). Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93, 6025–6030.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Dong, J. , Albertini, D. F. , Nishimori, K. , Kumar, T. R. , Lu, N. , and Matzuk, M. M. (1996). Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383, 531–535.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Downs, S. M. (1990). Protein synthesis inhibitors prevent both spontaneous and hormone-dependent maturation of isolated mouse oocytes. Mol. Reprod. Dev. 27, 235–243.
PubMed |

Downs, S. M. (1995). Control of the resumption of meiotic maturation in mammalian oocytes In ‘Gametes: The Oocyte’. (Eds. J G. Grudzinskas and J L. Yovich)  pp. 150–192. (Cambridge University Press: New York.)

Downs, S. M. (2001). A gap-junction-mediated signal, rather than an external paracrine factor, predominates during meiotic induction in isolated mouse oocytes. Zygote 9, 71–82.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Downs, S. M. , and Eppig, J. J. (1984). Cyclic adenosine monophosphate and ovarian follicular fluid act synergistically to inhibit mouse oocyte maturation. Endocrinology 114, 418–427.
PubMed |

Downs, S. M. , and Hunzicker-Dunn, M. (1995). Differential regulation of oocyte maturation and cumulus expansion in the mouse oocyte–cumulus cell complex by site-selective analogs of cyclic adenosine monophosphate. Dev. Biol. 172, 72–85.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Downs, S. M. , Daniel, S. A. , and Eppig, J. J. (1988). Induction of maturation in cumulus cell-enclosed mouse oocytes by follicle-stimulating hormone and epidermal growth factor: evidence for a positive stimulus of somatic cell origin. J. Exp. Zool. 245, 86–96.
PubMed |

Downs, S. M. , Humpherson, P. G. , Martin, K. L. , and Leese, H. J. (1996). Glucose utilization during gonadotropin-induced meiotic maturation in cumulus cell-enclosed mouse oocytes. Mol. Reprod. Dev. 44, 121–131.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Driancourt, M. A. , and Thuel, B. (1998). Control of oocyte growth and maturation by follicular cells and molecules present in follicular fluid. A review. Reprod. Nutr. Dev. 38, 345–362.
PubMed |

Eiberger, J. , Degen, J. , Romualdi, A. , Deutsch, U. , Willecke, K. , and Sohl, G. (2001). Connexin genes in the mouse and human genome. Cell Commun. Adhes. 8, 163–165.
PubMed |

Ekholm, C. , Hillensjo, T. , Magnusson, C. , and Rosberg, S. (1984). Stimulation and inhibition of rat oocyte meiosis by forskolin. Biol. Reprod. 30, 537–543.
PubMed |

Eppig, J. J. (1989). The participation of cyclic adenosine monophosphate (cAMP) in the regulation of meiotic maturation of oocytes in the laboratory mouse. J. Reprod. Fertil. Suppl. 38, 3–8.
PubMed |

Eppig, J. J. (1991). Intercommunication between mammalian oocytes and companion somatic cells. Bioessays 13, 569–574.
PubMed |

Eppig, J. J. , and Downs, S. M. (1987). The effect of hypoxanthine on mouse oocyte growth and development in vitro: maintenance of meiotic arrest and gonadotropin-induced oocyte maturation. Dev. Biol. 119, 313–321.
PubMed |

Eppig, J. J. , and Downs, S. M. (1988). Gonadotropin-induced murine oocyte maturation in vivo is not associated with decreased cyclic adenosine monophosphate in the oocyte–cumulus cell complex. Gamete Res. 20, 125–131.
PubMed |

Eppig, J. J. , Freter, R. R. , Ward-Bailey, P. F. , and Schultz, R. M. (1983). Inhibition of oocyte maturation in the mouse: participation of cAMP, steroid hormones, and a putative maturation-inhibitory factor. Dev. Biol. 100, 39–49.
PubMed |

Eppig, J. J. , Wigglesworth, K. , Pendola, F. , and Hirao, Y. (1997). Murine oocytes suppress expression of luteinizing hormone receptor messenger ribonucleic acid by granulosa cells. Biol. Reprod. 56, 976–984.
PubMed |

Eppig, J. J. , Pendola, F. L. , and Wigglesworth, K. (1998). Mouse oocytes suppress cAMP-induced expression of LH receptor mRNA by granulosa cells in vitro.  Mol. Reprod. Dev. 49, 327–332.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Eppig, J. J. , Wigglesworth, K. , and Pendola, F. L. (2002). The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc. Natl. Acad. Sci. USA 99, 2890–2894.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Fagbohun, C. F. , and Downs, S. M. (1991). Metabolic coupling and ligand-stimulated meiotic maturation in the mouse oocyte–cumulus cell complex. Biol. Reprod. 45, 851–859.
PubMed |

Fair, T. , Hyttel, P. , and Greve, T. (1995). Bovine oocyte diameter in relation to maturational competence and transcriptional activity. Mol. Reprod. Dev. 42, 437–442.
PubMed |

Fair, T. , Hulshof, S. C. , Hyttel, P. , Greve, T. , and Boland, M. (1997). Oocyte ultrastructure in bovine primordial to early tertiary follicles. Anat. Embryol. 195, 327–336.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Farin, C. E. , and Yang, L. (1994). Inhibition of germinal vesicle breakdown in bovine oocytes by 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB). Mol. Reprod. Dev. 37, 284–292.
PubMed |

Fox, C. A. , Sheets, M. D. , and Wickens, M. P. (1989). Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU. Genes Dev. 3, 2151–2162.
PubMed |

Galloway, S. M. , McNatty, K. P. , Cambridge, L. M. , Laitinen, M. P. , and Juengel, J. L. , et al. (2000). Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat. Genet. 25, 279–283.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Godwin, A. J. , Green, L. M. , Walsh, M. P. , McDonald, J. R. , Walsh, D. A. , and Fletcher, W. H. (1993). In situ regulation of cell–cell communication by the cAMP-dependent protein kinase and protein kinase C. Mol. Cell. Biochem. 127–128, 293–307.


Gosden, R. G. (2002). Oogenesis as a foundation for embryogenesis. Mol. Cell. Endocrinol. 186, 149–153.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Granot, I. , and Dekel, N. (1994). Phosphorylation and expression of connexin-43 ovarian gap junction protein are regulated by luteinizing hormone J. Biol. Chem. 269, 30502–30509.
PubMed |

Granot, I. , and Dekel, N. (2002). The ovarian gap junction protein connexin43: regulation by gonadotropins. Trends Endocrinol. Metab. 13, 310–313.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Grazul-Bilska, A. T. , Reynolds, L. P. , and Redmer, D. A. (1997). Gap junctions in the ovaries. Biol. Reprod. 57, 947–957.
PubMed |

Grondahl, C. , Ottesen, J. L. , Lessl, M. , Faarup, P. , Murray, A. , Gronvald, F. C. , Hegele-Hartung, C. , and Ahnfelt-Ronne, I. (1998). Meiosis-activating sterol promotes resumption of meiosis in mouse oocytes cultured in vitro in contrast to related oxysterols. Biol. Reprod. 58, 1297–1302.
PubMed |

Guixue, Z. , Luciano, A. M. , Coenen, K. , Gandolfi, F. , and Sirard, M. A. (2001). The influence of cAMP before or during bovine oocyte maturation on embryonic developmental competence. Theriogenology 55, 1733–1743.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hagemann, L. J. (1999). Influence of the dominant follicle on oocytes from subordinate follicles. Theriogenology 51, 449–459.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hashimoto, S. , Minami, N. , Takakura, R. , and Imai, H. (2002). Bovine immature oocytes acquire developmental competence during meiotic arrest in vitro.  Biol. Reprod. 66, 1696–1701.
PubMed |

Homa, S. T. (1988). Effects of cyclic AMP on the spontaneous meiotic maturation of cumulus-free bovine oocytes cultured in chemically defined medium. J. Exp. Zool. 248, 222–231.
PubMed |

Hunter, A. G. , and Moor, R. M. (1987). Stage-dependent effects of inhibiting ribonucleic acids and protein synthesis on meiotic maturation of bovine oocytes in vitro.  J. Dairy Sci. 70, 1646–1651.
PubMed |

Hunter, M. G. (2000). Oocyte maturation and ovum quality in pigs. Rev. Reprod. 5, 122–130.
PubMed |

Hunzicker-Dunn, M. , and Jungmann, R. A. (1978). Rabbit ovarian protein kinases. III. Gonadotrophin-induced activation of soluble adenosine 3′,5′-monophosphate-dependent protein kinases. Endocrinology 103, 441–451.
PubMed |

Hyttel, P. , Fair, T. , Callesen, H. , and Greve, T. (1997). Oocyte growth, capacitation and final maturation in cattle. Theriogenology 47, 23–32.
Crossref | GoogleScholarGoogle Scholar |

Izadyar, F. , Zeinstra, E. , and Bevers, M. M. (1998). Follicle-stimulating hormone and growth hormone act differently on nuclear maturation while both enhance developmental competence of in vitro matured bovine oocytes. Mol. Reprod. Dev. 51, 339–345.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kastrop, P. M. , Hulshof, S. C. , Bevers, M. M. , Destree, O. H. , and Kruip, T. A. (1991). The effects of α-amanitin and cycloheximide on nuclear progression, protein synthesis, and phosphorylation during bovine oocyte maturation in vitro.  Mol. Reprod. Dev. 28, 249–254.
PubMed |

Kidder, G. M. , and Mhawi, A. A. (2002). Gap junctions and ovarian folliculogenesis. Reproduction 123, 613–620.
PubMed |

Krischek, C. , and Meinecke, B. (2002). In vitro maturation of bovine oocytes requires polyadenylation of mRNAs coding proteins for chromatin condensation, spindle assembly, MPF and MAP kinase activation. Anim. Reprod. Sci. 73, 129–140.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kubelka, M. , Motlik, J. , Schultz, R. M. , and Pavlok, A. (2000). Butyrolactone I reversibly inhibits meiotic maturation of bovine oocytes, without influencing chromosome condensation activity. Biol. Reprod. 62, 292–302.
PubMed |

Kuge, H. , and Inoue, A. (1992). Maturation of Xenopus laevis oocytes by progesterone requires poly(A) tail elongation of mRNA. Exp. Cell Res. 202, 53–58.


Li, R. , Norman, R. J. , Armstrong, D. T. , and Gilchrist, R. B. (2000). Oocyte-secreted factor(s) determine functional differences between bovine mural granulosa cells and cumulus cells. Biol. Reprod. 63, 839–845.
PubMed |

Lonergan, P. , Monaghan, P. , Rizos, D. , Boland, M. P. , and Gordon, I. (1994). Effect of follicle size on bovine oocyte quality and developmental competence following maturation, fertilization, and culture in vitro.  Mol. Reprod. Dev. 37, 48–53.
PubMed |

Lonergan, P. , Khatir, H. , Carolan, C. , and Mermillod, P. (1997). Bovine blastocyst production in vitro after inhibition of oocyte meiotic resumption for 24 h. J. Reprod. Fertil. 109, 355–365.
PubMed |

Lonergan, P. , Dinnyes, A. , Fair, T. , Yang, X. , and Boland, M. (2000). Bovine oocyte and embryo development following meiotic inhibition with butyrolactone I. Mol. Reprod. Dev. 57, 204–209.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lonergan, P. , Faerge, I. , Hyttel, P. M. , Boland, M. , and Fair, T. (2003a). Ultrastructural modifications in bovine oocytes maintained in meiotic arrest in vitro using roscovitine or butyrolactone. Mol. Reprod. Dev. 64, 369–378.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lonergan, P. , Rizos, D. , Gutierrez-Adan, A. , Fair, T. , and Boland, M. (2003b). Oocyte and embryo quality: effect of origin, culture conditions and gene expression patterns. Reprod. Domest. Anim. 38, 259–267.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mahesh, V. B. , Brann, D. W. , and Hendry, L. B. (1996). Diverse modes of action of progesterone and its metabolites. J. Steroid Biochem. Mol. Biol. 56, 209–219.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Manikkam, M. , Calder, M. D. , Salfen, B. E. , Youngquist, R. S. , Keisler, D. H. , and Garverick, H. A. (2001). Concentrations of steroids and expression of messenger RNA for steroidogenic enzymes and gonadotropin receptors in bovine ovarian follicles of first and second waves and changes in second wave follicles after pulsatile LH infusion. Anim. Reprod. Sci. 67, 189–203.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Martus, N. S. , and Farin, C. E. (1994). Effectiveness of DRB for inhibiting germinal vesicle breakdown in bovine oocytes. Theriogenology 42, 1295–1302.
Crossref | GoogleScholarGoogle Scholar |

Matzuk, M. M. , Burns, K. H. , Viveiros, M. M. , and Eppig, J. J. (2002). Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 296, 2178–2180.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Meduri, G. , Charnaux, N. , Driancourt, M. A. , Combettes, L. , Granet, P. , Vannier, B. , Loosfelt, H. , and Milgrom, E. (2002). Follicle-stimulating hormone receptors in oocytes? J. Clin. Endocrinol. Metab. 87, 2266–2276.
PubMed |

Meinecke, B. , and Meinecke-Tillmann, S. (1993). Effects of α-amanitin on nuclear maturation of porcine oocytes in vitro.  J. Reprod. Fertil. 98, 195–201.
PubMed |

Memili, E. , and First, N. L. (1999). Control of gene expression at the onset of bovine embryonic development. Biol. Reprod. 61, 1198–1207.
PubMed |

Mermillod, P. , Tomanek, M. , Marchal, R. , and Meijer, L. (2000). High developmental competence of cattle oocytes maintained at the germinal vesicle stage for 24 hours in culture by specific inhibition of MPF kinase activity. Mol. Reprod. Dev. 55, 89–95.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Neilson, L. , Andalibi, A. , Kang, D. , Coutifaris, C. , Strauss, J. F. , Stanton, J. A. , and Green, D. P. (2000). Molecular phenotype of the human oocyte by PCR-SAGE. Genomics 63, 13–24.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Osborn, J. C. , and Moor, R. M. (1983). Time-dependent effects of α-amanitin on nuclear maturation and protein synthesis in mammalian oocytes. J. Embryol. Exp. Morphol. 73, 317–338.
PubMed |

Patsoula, E. , Loutradis, D. , Drakakis, P. , Kallianidis, K. , Bletsa, R. , and Michalas, S. (2001). Expression of mRNA for the LH and FSH receptors in mouse oocytes and preimplantation embryos. Reproduction 121, 455–461.
PubMed |

Patsoula, E. , Loutradis, D. , Drakakis, P. , Michalas, L. , Bletsa, R. , and Michalas, S. (2003). Messenger RNA expression for the follicle-stimulating hormone receptor and luteinizing hormone receptor in human oocytes and preimplantation-stage embryos. Fertil. Steril. 79, 1187–1193.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Peng, X. R. , Hsueh, A. J. , LaPolt, P. S. , Bjersing, L. , and Ny, T. (1991). Localization of luteinizing hormone receptor messenger ribonucleic acid expression in ovarian cell types during follicle development and ovulation. Endocrinology 129, 3200–3207.
PubMed |

Picton, H. , Briggs, D. , and Gosden, R. (1998). The molecular basis of oocyte growth and development. Mol. Cell. Endocrinol. 145, 27–37.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ponderato, N. , Lagutina, I. , Crotti, G. , Turini, P. , Galli, C. , and Lazzari, G. (2001). Bovine oocytes treated prior to in vitro maturation with a combination of butyrolactone I and roscovitine at low doses maintain a normal developmental capacity. Mol. Reprod. Dev. 60, 579–585.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Richard, F. J. , and Sirard, M. A. (1996a). Effects of follicular cells on oocyte maturation. I: Effects of follicular hemisections on bovine oocyte maturation in vitro.  Biol. Reprod. 54, 16–21.
PubMed |

Richard, F. J. , and Sirard, M. A. (1996b). Effects of follicular cells on oocyte maturation. II: Theca cell inhibition of bovine oocyte maturation in vitro.  Biol. Reprod. 54, 22–28.
PubMed |

Richard, F. J. , Tsafriri, A. , and Conti, M. (2001). Role of phosphodiesterase type 3A in rat oocyte maturation. Biol. Reprod. 65, 1444–1451.
PubMed |

Richter, J. D. (1999). Cytoplasmic polyadenylation in development and beyond. Microbiol. Mol. Biol. Rev. 63, 446–456.
PubMed |

Rizos, D. , Ward, F. , Duffy, P. , Boland, M. P. , and Lonergan, P. (2002). Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol. Reprod. Dev. 61, 234–248.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Robert, C. , Barnes, F. L. , Hue, I. , and Sirard, M. A. (2000). Subtractive hybridization used to identify mRNA associated with the maturation of bovine oocytes. Mol. Reprod. Dev. 57, 167–175.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Robert, C. , Gagne, D. , Bousquet, D. , Barnes, F. L. , and Sirard, M. A. (2001). Differential display and suppressive subtractive hybridization used to identify granulosa cell messenger RNA associated with bovine oocyte developmental competence. Biol. Reprod. 64, 1812–1820.
PubMed |

Rodriguez, K. F. , Petters, R. M. , Crosier, A. E. , and Farin, C. E. (2002). Roles of gene transcription and PKA subtype activation in maturation of murine oocytes. Reproduction 123, 799–806.
PubMed |

Sakura, H. , Maekawa, T. , Imamoto, F. , Yasuda, K. , and Ishii, S. (1988). Two human genes isolated by a novel method encode DNA-binding proteins containing a common region of homology. Gene 73, 499–507.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sato, E. , Wood, H. N. , Lynn, D. G. , and Koide, S. S. (1985). Modulation of oocyte maturation by cyclic adenosine 3′,5′- pyrophosphate. Cell Differ. 17, 169–174.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schultz, R. M. , Montgomery, R. R. , and Belanoff, J. R. (1983a). Regulation of mouse oocyte meiotic maturation: implication of a decrease in oocyte cAMP and protein dephosphorylation in commitment to resume meiosis. Dev. Biol. 97, 264–273.
PubMed |

Schultz, R. M. , Montgomery, R. R. , Ward-Bailey, P. F. , and Eppig, J. J. (1983b). Regulation of oocyte maturation in the mouse: possible roles of intercellular communication, cAMP, and testosterone. Dev. Biol. 95, 294–304.
PubMed |

Shimada, M. , Nishibori, M. , Isobe, N. , Kawano, N. , and Terada, T. (2003). Luteinizing hormone receptor formation in cumulus cells surrounding porcine oocytes and its role during meiotic maturation of porcine oocytes. Biol. Reprod. 68, 1142–1149.
PubMed |

Sirard, M. A. (2001). Resumption of meiosis: mechanism involved in meiotic progression and its relation with developmental competence. Theriogenology 55, 1241–1254.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sirard, M. A. , Picard, L. , Dery, M. , Coenen, K. , and Blondin, P. (1999). The time interval between FSH administration and ovarian aspiration influences the development of cattle oocytes. Theriogenology 51, 698–708.
Crossref | GoogleScholarGoogle Scholar |

Sommersberg, B. , Bulling, A. , Salzer, U. , Frohlich, U. , Garfield, R. E. , Amsterdam, A. , and Mayerhofer, A. (2000). Gap junction communication and connexin 43 gene expression in a rat granulosa cell line: regulation by follicle-stimulating hormone. Biol. Reprod. 63, 1661–1668.
PubMed |

Sorensen, R. A. , and Wassarman, P. M. (1976). Relationship between growth and meiotic maturation of the mouse oocyte. Dev. Biol. 50, 531–536.
PubMed |

Stanton, J. L. , Bascand, M. , Fisher, L. , Quinn, M. , Macgregor, A. , and Green, D. P. (2002). Gene expression profiling of human GV oocytes: an analysis of a profile obtained by serial analysis of gene expression (SAGE). J. Reprod. Immunol. 53, 193–201.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tong, Z. B. , Gold, L. , Pfeifer, K. E. , Dorward, H. , Lee, E. , Bondy, C. A. , Dean, J. , and Nelson, L. M. (2000). Mater, a maternal effect gene required for early embryonic development in mice. Nat. Genet. 26, 267–268.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tsafriri, A. , Lieberman, M. E. , Barnea, A. , Bauminger, S. , and Lindner, H. R. (1973). Induction by luteinizing hormone of ovum maturation and of steroidogenesis in isolated Graafian follicles of the rat: role of RNA and protein synthesis. Endocrinology 93, 1378–1386.
PubMed |

Tsafriri, A. , Lieberman, M. E. , Koch, Y. , Bauminger, S. , Chobsieng, P. , Zor, U. , and Lindner, H. R. (1976). Capacity of immunologically purified FSH to stimulate cyclic AMP accumulation and steroidogenesis in Graafian follicles and to induce ovum maturation and ovulation in the rat. Endocrinology 98, 655–661.
PubMed |

Tsafriri, A. , Chun, S. Y. , Zhang, R. , Hsueh, A. J. , and Conti, M. (1996). Oocyte maturation involves compartmentalization and opposing changes of cAMP levels in follicular somatic and germ cells: studies using selective phosphodiesterase inhibitors. Dev. Biol. 178, 393–402.
Crossref | GoogleScholarGoogle Scholar | PubMed |

van de Leemput, E. E. , Vos, P. L. , Zeinstra, E. C. , Bevers, M. M. , van der Weijden, G. C. , and Dieleman, S. J. (1999). Improved in vitro embryo development using in vivo matured oocytes from heifers superovulated with a controlled preovulatory LH surge. Theriogenology 52, 335–349.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vanderhyden, B. (2002). Molecular basis of ovarian development and function. Front. Biosci. 7, D2006–D2022.
PubMed |

Vanderhyden, B. C. , Telfer, E. E. , and Eppig, J. J. (1992). Mouse oocytes promote proliferation of granulosa cells from preantral and antral follicles in vitro.  Biol. Reprod. 46, 1196–1204.
PubMed |

van Tol, H. T. , van Eijk, M. J. , Mummery, C. L. , van den Hurk, R. , and Bevers, M. M. (1996). Influence of FSH and hCG on the resumption of meiosis of bovine oocytes surrounded by cumulus cells connected to membrana granulosa. Mol. Reprod. Dev. 45, 218–224.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vozzi, C. , Formenton, A. , Chanson, A. , Senn, A. , Sahli, R. , Shaw, P. , Nicod, P. , Germond, M. , and Haefliger, J. A. (2001). Involvement of connexin 43 in meiotic maturation of bovine oocytes. Reproduction 122, 619–628.
PubMed |

Ward, F. , Enright, B. , Rizos, D. , Boland, M. , and Lonergan, P. (2002). Optimization of in vitro bovine embryo production: effect of duration of maturation, length of gamete co-incubation, sperm concentration and sire. Theriogenology 57, 2105–2117.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wasserman, P. M. and  Albertini, D. F. (1994). The mammalian ovum In ‘The Physiology of Reproduction’. (Eds. E Knobil and J D. Neill)  pp. 79–115. (Raven Press: New York.)

Webb, R. J. , Marshall, F. , Swann, K. , and Carroll, J. (2002). Follicle-stimulating hormone induces a gap junction-dependent dynamic change in [cAMP] and protein kinase a in mammalian oocytes. Dev. Biol. 246, 441–454.
Crossref | GoogleScholarGoogle Scholar | PubMed |

West, M. F. , Verrotti, A. C. , Salles, F. J. , Tsirka, S. E. , and Strickland, S. (1996). Isolation and characterization of two novel, cytoplasmically polyadenylated, oocyte-specific, mouse maternal RNAs. Dev. Biol. 175, 132–141.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wolf, C. J. , and Farin, C. E. (1996). Effect of gonadotropins on the ability of 5,6-dichloro-1-β-d-ribofuranosylbenzamidazole (DRB) to inhibit germinal vesicle breakdown in bovine oocytes. Theriogenology 46, 759–768.
Crossref | d
-ribofuranosylbenzamidazole (DRB) to inhibit germinal vesicle breakdown in bovine oocytes.&journal=Theriogenology&volume=46&pages=759-768&publication_year=1996&author=C%2E%20J%2E%20Wolf&hl=en&doi=10.1016/S0093-691X(96)00234-8" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar |

Wu, X. , Viveiros, M. M. , Eppig, J. J. , Bai, Y. , Fitzpatrick, S. L. , and Matzuk, M. M. (2003). Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat. Genet. 33, 187–191.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Xu, Z. , Garverick, H. A. , Smith, G. W. , Smith, M. F. , Hamilton, S. A. , and Youngquist, R. S. (1995). Expression of follicle-stimulating hormone and luteinizing hormone receptor messenger ribonucleic acids in bovine follicles during the first follicular wave. Biol. Reprod. 53, 951–957.
PubMed |

Yan, C. , Wang, P. , DeMayo, F. J. , and Elvin, J. A. , et al. (2001). Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol. Endocrinol. 15, 854–866.
PubMed |

Zandomeni, R. , Bunick, D. , Ackerman, S. , Mittleman, B. , and Weinmann, R. (1983). Mechanism of action of DRB. III. Effect on specific in vitro initiation of transcription. J. Mol. Biol. 167, 561–574.
PubMed |

Zarkower, D. , Stephenson, P. , Sheets, M. , and Wickens, M. (1986). The AAUAAA sequence is required both for cleavage and for polyadenylation of simian virus 40 pre-mRNA in vitro.  Mol. Cell. Biol. 6, 2317–2323.
PubMed |

Zeng, F. , and Schultz, R. M. (2003). Gene expression in mouse oocytes and preimplantation embryos: use of suppression subtractive hybridization to identify oocyte- and embryo-specific genes. Biol. Reprod. 68, 31–39.
PubMed |

Zubay, G. (1983). ‘Biochemistry.’ (Addison-Wesley: New York.)