CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
Journal Banner
  Vertebrate Reproductive Science & Technology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.


Article << Previous     |     Next >>   Contents Vol 22(1)

Towards the use of microfluidics for individual embryo culture

R. L. Krisher A B, M. B. Wheeler A

A University of Illinois, Urbana-Champaign, Urbana, IL 61821, USA.
B Corresponding author. Email: rkrisher@illinois.edu
PDF (341 KB) $25
 Export Citation


Mammalian embryo development is still relatively inefficient in vitro. Much research has been conducted on the chemical environment, or culture medium, surrounding the embryo, but little attention has been given to the actual physical culture environment, which has changed very little over the years. The application of microfluidics to embryo production in vitro is a tantalising approach that may alleviate some of the limits that traditional microdrop culture places on embryo development and research into gamete and embryo physiology. These devices may lead to enhanced in vitro embryo development and quality by more closely mimicking the in vivo environment. Initial work in this area is promising and gives us proof-of-principle that these unique microfluidic systems may indeed be applicable to in vitro culture of gametes and embryos. The present paper reviews the advantages of microfluidics for in vitro embryo production: how the platforms are manufactured, the current uses of microfluidics in assisted reproduction, static v. dynamic culture environments, individual gamete and embryo culture and the future directions of microfluidic application to in vitro embryo production and manipulation. Finally, preliminary data from our laboratory using a new microfluidic well insert for porcine, bovine and murine embryo culture is discussed.

Keywords: in vitro fertilisation, in vitro maturation, oocyte.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015