Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Gene silencing in bovine zygotes: siRNA transfection versus microinjection

Ciara M. O’Meara A , James D. Murray B , Solomon Mamo A , Emma Gallagher A , James Roche A and Patrick Lonergan A C
+ Author Affiliations
- Author Affiliations

A School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.

B Departments of Animal Science and Population Health and Reproduction, University of California, Davis, CA 95616, USA.

C Corresponding author. Email: pat.lonergan@ucd.ie

Reproduction, Fertility and Development 23(4) 534-543 https://doi.org/10.1071/RD10175
Submitted: 12 July 2010  Accepted: 10 November 2010   Published: 11 April 2011

Abstract

The aim of this study was to compare gene silencing in bovine zygotes when small interfering RNAs (siRNAs) were introduced into bovine zygotes by microinjection or lipid-based transfection. In Experiment 1, E-cadherin siRNA was injected at 100 or 375 µM and compared with PBS-injected and non-injected controls. Embryos were then cultured in vitro for 7 days and periodically assessed for development. For transfection, zona-free zygotes were incubated in transfection medium with siRNA for 1 h at 39°C and then cultured to Day 7. Injection of PBS or 375 µM E-cadherin siRNA resulted in a decrease in the number of embryos reaching the 8-cell stage (51.5% and 45.5%) or the blastocyst stage (39.0 and 32.5%) compared with non-injected controls (62.9 and 45.0%, respectively; P < 0.05). Messenger RNA abundance was suppressed by 36 and 46% when siRNA targeting E-cadherin was injected at 100 and 375 µM, respectively, compared with controls (P < 0.05). Transfection with 100 nM E-cadherin siRNA decreased development to the 8-cell stage (20.3 versus 53.0%) and blastocyst stage (7.2 versus 18.2%) compared with controls (P < 0.05). Messenger RNA relative abundance was not different between controls (non-transfected or transfected with GAPDH or scrambled siRNA). However, transfection of zygotes with 100 and 200 nM E-cadherin siRNA led to a 72 and 38% reduction, respectively, in E-cadherin mRNA relative abundance in Day 7 blastocysts compared with controls (P < 0.05).

Additional keywords: embryos, IVF, RNA interference.


References

Bertolini, M., Bertolini, L. R., Petkov, S. G., Madden, K. R., Murray, J. D., and Anderson, G. B. (2006). 120 embryo survival following lipid-based transfection of 1-cell stage bovine embryos with small interfering RNA (siRNA) fragments and/or DNA. Reprod. Fertil. Dev. 18, 168–169.
120 embryo survival following lipid-based transfection of 1-cell stage bovine embryos with small interfering RNA (siRNA) fragments and/or DNA.Crossref | GoogleScholarGoogle Scholar |

Cabot, R. A., and Prather, R. S. (2003). Cleavage stage porcine embryos may have differing developmental requirements for karyopherins alpha2 and alpha3. Mol. Reprod. Dev. 64, 292–301.
Cleavage stage porcine embryos may have differing developmental requirements for karyopherins alpha2 and alpha3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1Whtg%3D%3D&md5=721b6dfa7de2867e1324743474fdf76aCAS | 12548662PubMed |

Carballada, R., Degefa, T., and Esponda, P. (2000). Transfection of mouse eggs and embryos using DNA combined to cationic liposomes. Mol. Reprod. Dev. 56, 360–365.
Transfection of mouse eggs and embryos using DNA combined to cationic liposomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFOntr0%3D&md5=7601181d8537668eb25f5316078b666aCAS | 10862002PubMed |

Carballada, R., Relloso, M., and Esponda, P. (2002). Generation of transgenic mice by transfection of pronuclear embryos using lipid–DNA complexes. Zygote 10, 209–216.
Generation of transgenic mice by transfection of pronuclear embryos using lipid–DNA complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFGlsr8%3D&md5=8dbe761ecc7a19e32744e0e022409813CAS | 12214801PubMed |

Dadi, T. D., Li, M. W., and Lloyd, K. C. K. (2009). Decreased growth factor expression through RNA interference inhibits development of mouse preimplantation embryos. Comp. Med. 59, 331–338.
| 1:CAS:528:DC%2BD1MXhtlSitbnF&md5=1590fd75b23e63490f4a29c0299c5ebeCAS | 19712572PubMed |

Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W., and Tuschl, T. (2001). Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888.
Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVaqurw%3D&md5=f003584619b61bc61f86b2527be8f5efCAS | 11726523PubMed |

Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.
Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlCju74%3D&md5=5203280dea326685c3ce5350f1792633CAS | 9486653PubMed |

Goossens, K., Tesfaye, D., Rings, F., Schellander, K., Holker, M., Van Poucke, M., Van Zeveren, A., Lemahieu, I., Van Soom, A., and Peelman, L. J. (2010). Suppression of Keratin 18 gene expression in bovine blastocysts by RNA interference. Reprod. Fertil. Dev. 22, 395–404.
Suppression of Keratin 18 gene expression in bovine blastocysts by RNA interference.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlar&md5=15b71c2e1e5848fd044c8fbea725532fCAS | 20047725PubMed |

Grabarek, J. B., Plusa, B., Glover, D. M., and Zernicka-Goetz, M. (2002). Efficient delivery of dsRNA into zona-enclosed mouse oocytes and preimplantation embryos by electroporation. Genesis 32, 269–276.
Efficient delivery of dsRNA into zona-enclosed mouse oocytes and preimplantation embryos by electroporation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xkt1Sjsrs%3D&md5=dfa5958db85832780a3428f59116a2d3CAS | 11948914PubMed |

Haraguchi, S., Saga, Y., Naito, K., Inoue, H., and Seto, A. (2004). Specific gene silencing in the pre-implantation stage mouse embryo by an siRNA expression vector system. Mol. Reprod. Dev. 68, 17–24.
Specific gene silencing in the pre-implantation stage mouse embryo by an siRNA expression vector system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivFyku7s%3D&md5=46ba146360827f46144e9070c0f11fa8CAS | 15039944PubMed |

Holm, P., Booth, P. J., Schmidt, M. H., Greve, T., and Callesen, H. (1999). High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 52, 683–700.
High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7pvVGnsw%3D%3D&md5=26633a11a012ea179b9a1f80585e2f19CAS | 10734366PubMed |

Kim, M.-H., Yuan, X., Okumura, S., and Ishikawa, F. (2002). Successful inactivation of endogenous Oct-3/4 and c-mos genes in mouse preimplantation embryos and oocytes using short interfering RNAs. Biochem. Biophys. Res. Commun. 296, 1372–1377.
Successful inactivation of endogenous Oct-3/4 and c-mos genes in mouse preimplantation embryos and oocytes using short interfering RNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1Wltr0%3D&md5=8c25d37c2d2ef826b2557a0b6c4b5c37CAS | 12207927PubMed |

Larue, L., Ohsugi, M., Hirchenhain, J., and Kemler, R. (1994). E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc. Natl. Acad. Sci. USA 91, 8263–8267.
E-cadherin null mutant embryos fail to form a trophectoderm epithelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsFCjur8%3D&md5=6a5149c80bd1ce3f2c1b6e188af62d60CAS |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402–408.
| 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=e0ea026c02920b4196beca401ea8984bCAS | 11846609PubMed |

Manche, L., Green, S. R., Schmedt, C., and Mathews, M. B. (1992). Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol. Cell. Biol. 12, 5238–5248.
| 1:CAS:528:DyaK38XmsVOls7w%3D&md5=1573a7fb062cd922d7c0c6e7574b86eaCAS | 1357546PubMed |

Nganvongpanit, K., Muller, H., Rings, F., Gilles, M., Jennen, D., Holker, M., Tholen, E., and Schellander, K. (2006). Targeted suppression of E-cadherin gene expression in bovine preimplantation embryo by RNA interference technology using double-stranded RNA. Mol. Reprod. Dev. 73, 153–163.
Targeted suppression of E-cadherin gene expression in bovine preimplantation embryo by RNA interference technology using double-stranded RNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjslygtg%3D%3D&md5=e9cf4dbb81605a458a63629ec22e7ad2CAS | 16250007PubMed |

Paradis, F., Vigneault, C., Robert, C., and Sirard, M. A. (2005). RNA interference as a tool to study gene function in bovine oocytes. Mol. Reprod. Dev. 70, 111–121.
RNA interference as a tool to study gene function in bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlSksw%3D%3D&md5=12d6d1b53e6ffbe5b79e37fb93727de7CAS | 15570624PubMed |

Pauken, C. M., and Capco, D. G. (1999). Regulation of cell adhesion during embryonic compaction of mammalian embryos: roles for PKC and beta-catenin. Mol. Reprod. Dev. 54, 135–144.
Regulation of cell adhesion during embryonic compaction of mammalian embryos: roles for PKC and beta-catenin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtVSktb4%3D&md5=08130d83a1fa23c0ec5864f83a28d977CAS | 10471473PubMed |

Pey, R., Vial, C., Schatten, G., and Hafner, M. (1998). Increase in intracellular Ca2+ and relocation of E-cadherin during experimental decompaction of mouse embryos. Proc. Natl. Acad. Sci. USA 95, 12 977–12 982.
Increase in intracellular Ca2+ and relocation of E-cadherin during experimental decompaction of mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFWktLc%3D&md5=7e6aee050bb79b5bfaafcdf2b0e58e8dCAS |

Pratt, H. P., Chakraborty, J., and Surani, M. A. (1981). Molecular and morphological differentiation of the mouse blastocyst after manipulations of compaction with cytochalasin D. Cell 26, 279–292.
Molecular and morphological differentiation of the mouse blastocyst after manipulations of compaction with cytochalasin D.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XktlSr&md5=87257d84f488d5568948027a1b11bdc4CAS | 7332931PubMed |

Riethmacher, D., Brinkmann, V., and Birchmeier, C. (1995). A targeted mutation in the mouse E-Cadherin gene results in defective preimplantation development. Proc. Natl. Acad. Sci. USA 92, 855–859.
A targeted mutation in the mouse E-Cadherin gene results in defective preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsVKiu70%3D&md5=e92d2bbc90a442494621abd4f8fed494CAS |

Schoen, J., Bondzio, A., Topp, K., and Einspanier, R. (2008). Establishment and characterization of an adherent pure epithelial cell line derived from the bovine oviduct. Theriogenology 69, 536–545.
Establishment and characterization of an adherent pure epithelial cell line derived from the bovine oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislKksLc%3D&md5=5ec72ad60f8f14340e23d5b25f5588e9CAS | 18242684PubMed |

Siddall, L. S., Barcroft, L. C., and Watson, A. J. (2002). Targeting gene expression in the preimplantation mouse embryo using morpholino antisense oligonucleotides. Mol. Reprod. Dev. 63, 413–421.
Targeting gene expression in the preimplantation mouse embryo using morpholino antisense oligonucleotides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotlCgsbY%3D&md5=1d7860ce6c7af85170fdf94de10e030cCAS | 12412042PubMed |

Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H., and Schreiber, R. D. (1998). How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264.
How cells respond to interferons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsFOmsLo%3D&md5=e9afc77531792adc12674e6e09f35beaCAS | 9759489PubMed |

Stein, P., Svoboda, P., and Schultz, R. M. (2003). Transgenic RNAi in mouse oocytes: a simple and fast approach to study gene function. Dev. Biol. 256, 187–193.
Transgenic RNAi in mouse oocytes: a simple and fast approach to study gene function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlWgsrw%3D&md5=12e39a812d85385e4d22d14f51374c2fCAS | 12654301PubMed |

Svoboda, P., Stein, P., Hayashi, H., and Schultz, R. M. (2000). Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 127, 4147–4156.
| 1:CAS:528:DC%2BD3cXotVWisLY%3D&md5=c27cf6afe85d3a296d043cc7e38799b8CAS | 10976047PubMed |

Taylor, J., Moore, H., Beaujean, N., Gardner, J., Wilmut, I., Meehan, R., and Young, L. (2009). Cloning and expression of sheep DNA methyltransferase 1 and its development-specific isoform. Mol. Reprod. Dev. 76, 501–513.
Cloning and expression of sheep DNA methyltransferase 1 and its development-specific isoform.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVWjt7c%3D&md5=6a92eb9ec437b81588c2bafc88d8dc84CAS | 18951375PubMed |

Tesfaye, D., Lonergan, P., Holker, M., Rings, F., Nganvongpanit, K., Havlicek, V., Besenfelder, U., Jennen, D., Tholen, E., and Schellander, K. (2007). Suppression of Connexin 43 and E-cadherin transcripts in in vitro-derived bovine embryos following culture in vitro or in vivo in the homologous bovine oviduct. Mol. Reprod. Dev. 74, 978–988.
Suppression of Connexin 43 and E-cadherin transcripts in in vitro-derived bovine embryos following culture in vitro or in vivo in the homologous bovine oviduct.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntVOhuro%3D&md5=b7726f85969793ecd6b2d7f75d6bd299CAS | 17219420PubMed |

Vajta, G., Peura, T. T., Holm, P., Páldi, A., Greve, T., Trounson, A. O., and Callesen, H. (2000). New method for culture of zona-included or zona-free embryos: the Well-of-the-Well (WOW) system. Mol. Reprod. Dev. 55, 256–264.
New method for culture of zona-included or zona-free embryos: the Well-of-the-Well (WOW) system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtFelsbY%3D&md5=ce4fcee33b7f6e707fdecc49d8f52a6eCAS | 10657044PubMed |

Vestweber, D., Gossler, A., Boller, K., and Kemler, R. (1987). Expression and distribution of cell adhesion molecule uvomorulin in mouse preimplantation embryos. Dev. Biol. 124, 451–456.
Expression and distribution of cell adhesion molecule uvomorulin in mouse preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmtFGgtro%3D&md5=a6537162ca4b6a7c86e5c028fb625b14CAS | 3315781PubMed |

Wianny, F., and Zernicka-Goetz, M. (2000). Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell Biol. 2, 70–75.
Specific interference with gene function by double-stranded RNA in early mouse development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVyltL8%3D&md5=17cbf11ececaf3f8a5d0dbd3bed389b3CAS | 10655585PubMed |