Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Follicular somatic cell factors and follicle development

J. Buratini Jr A C and C. A. Price B
+ Author Affiliations
- Author Affiliations

A Departamento de Fisiologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo 18618-000, Brasil.

B Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec J2S 7C6, Canada.

C Corresponding author. Email: buratini@ibb.unesp.br

Reproduction, Fertility and Development 23(1) 32-39 https://doi.org/10.1071/RD10224
Published: 7 December 2010

Abstract

Considerable attention is currently paid to oocyte-derived secreted factors that act upon cumulus and granulosa cells. Also important for follicle development are somatic cell-derived secreted factors. This is illustrated by the ability of granulosa cell-derived Kit ligand (KITL) to promote primordial follicle activation, and the loss of follicle development that accompanies KITL gene disruption. This review summarises our current understanding of somatic cell factors during both preantral and antral follicle growth, involving not only signalling from granulosa cells to the oocyte, but also signalling between granulosa and theca cells. Principal granulosa cell-derived factors include activin, anti-Müllerian hormone (AMH), bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs). Theca cells also secrete BMPs and FGFs. The interplay between these factors is equally important for follicle growth as the activity of oocyte-derived factors.

Additional keywords: BMP, FGF, folliculogenesis, granulosa cells, intra-ovarian factors, theca cells.


References

Aad, P. Y., Voge, J. L., Santiago, C. A., Malayer, J. R., and Spicer, L. J. (2006). Real-time RT–PCR quantification of pregnancy-associated plasma protein-A mRNA abundance in bovine granulosa and theca cells: effects of hormones in vitro. Domest. Anim. Endocrinol. 31, 357–372.
Real-time RT–PCR quantification of pregnancy-associated plasma protein-A mRNA abundance in bovine granulosa and theca cells: effects of hormones in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVyit7vI&md5=1b0c563cc931ef7c89f02f7c6170879eCAS | 16439093PubMed |

Armstrong, D. G., Baxter, G., Hogg, C. O., and Woad, K. J. (2002). Insulin-like growth factor (IGF) system in the oocyte and somatic cells of bovine preantral follicles. Reproduction 123, 789–797.
Insulin-like growth factor (IGF) system in the oocyte and somatic cells of bovine preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVCiurg%3D&md5=508bc3cf0e1b523108d7a536b1ca9217CAS | 12052233PubMed |

Baird, A., and Hsueh, A. J. (1986). Fibroblast growth factor as an intraovarian hormone: differential regulation of steroidogenesis by an angiogenic factor. Regul. Pept. 16, 243–250.
Fibroblast growth factor as an intraovarian hormone: differential regulation of steroidogenesis by an angiogenic factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtlagt7s%3D&md5=558c7b71663bcb5ffec145c24ae13119CAS | 3104999PubMed |

Bao, B., and Garverick, H. A. (1998). Expression of steroidogenic enzyme and gonadotropin receptor genes in bovine follicles during ovarian follicular waves: a review. J. Anim. Sci. 76, 1903–1921.
| 1:CAS:528:DyaK1cXkvV2hsLk%3D&md5=0574c466013d223bc66a6b7e5a1a1e7dCAS | 9690647PubMed |

Beg, M. A., and Ginther, O. J. (2006). Follicle selection in cattle and horses: role of intrafollicular factors. Reproduction 132, 365–377.
Follicle selection in cattle and horses: role of intrafollicular factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCgt77F&md5=0ed00c5399c141e9ef46c8655e500c45CAS | 16940278PubMed |

Ben-Haroush, A., Abir, R., Ao, A., Jin, S., Kessler-Icekson, G., Feldberg, D., and Fisch, B. (2005). Expression of basic fibroblast growth factor and its receptors in human ovarian follicles from adults and fetuses. Fertil. Steril. 84, 1257–1268.
Expression of basic fibroblast growth factor and its receptors in human ovarian follicles from adults and fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOqtb7N&md5=35bfbd405c0ba179564ffa7e601883adCAS | 16210019PubMed |

Berisha, B., Schams, D., Kosmann, M., Amselgruber, W., and Einspanier, R. (2000). Expression and localisation of vascular endothelial growth factor and basic fibroblast growth factor during the final growth of bovine ovarian follicles. J. Endocrinol. 167, 371–382.
Expression and localisation of vascular endothelial growth factor and basic fibroblast growth factor during the final growth of bovine ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVCqtg%3D%3D&md5=674826e9e88303b97a10291812bcbc10CAS | 11115764PubMed |

Berisha, B., Sinowatz, F., and Schams, D. (2004). Expression and localization of fibroblast growth factor (FGF) family members during the final growth of bovine ovarian follicles. Mol. Reprod. Dev. 67, 162–171.
Expression and localization of fibroblast growth factor (FGF) family members during the final growth of bovine ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVKrsA%3D%3D&md5=48bd71ef457135a7c21ace68f433b5ffCAS | 14694431PubMed |

Buratini, J., Jr, Glapinski, V. F., Giometti, I. C., Teixeira, A. B., Costa, I. B., Avellar, M. C., Barros, C. M., and Price, C. A. (2005a). Expression of fibroblast growth factor-8 and its cognate receptors, fibroblast growth factor receptor (FGFR)-3c and-4, in fetal bovine preantral follicles. Mol. Reprod. Dev. 70, 255–261.
Expression of fibroblast growth factor-8 and its cognate receptors, fibroblast growth factor receptor (FGFR)-3c and-4, in fetal bovine preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVShurk%3D&md5=c1eb5f1ef7c4265bc90e3fbc69463892CAS | 15625702PubMed |

Buratini, J., Jr, Teixeira, A. B., Costa, I. B., Glapinski, V. F., Pinto, M. G. L., Giometti, I. C., Barros, C. M., Cao, M., Nicola, E. S., and Price, C. A. (2005b). Expression of fibroblast growth factor-8 and regulation of cognate receptors, fibroblast growth factor receptor (FGFR)-3c and -4, in bovine antral follicles. Reproduction 130, 343–350.
Expression of fibroblast growth factor-8 and regulation of cognate receptors, fibroblast growth factor receptor (FGFR)-3c and -4, in bovine antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWisr3I&md5=8469b072784e668eafbc2d7566228b95CAS | 16123241PubMed |

Buratini, J., Jr, Pinto, M. G. L., Castilho, A. C., Amorim, R. L., Giometti, I. C., Portela, V. M., Nicola, E. S., and Price, C. A. (2007). Expression and function of fibroblast growth factor 10 and its receptor, fibroblast growth factor receptor 2b, in bovine follicles. Biol. Reprod. 77, 743–750.
Expression and function of fibroblast growth factor 10 and its receptor, fibroblast growth factor receptor 2b, in bovine follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFahsb3F&md5=416173ae3361fd62e8e2626ad95ac8e0CAS | 17582010PubMed |

Campbell, B. K., Scaramuzzi, R. J., and Webb, R. (1996). Induction and maintenance of oestradiol and immunoreactive inhibin production with FSH by ovine granulosa cells cultured in serum-free media. J. Reprod. Fertil. 106, 7–16.
Induction and maintenance of oestradiol and immunoreactive inhibin production with FSH by ovine granulosa cells cultured in serum-free media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtVCnsw%3D%3D&md5=daf769fea214282dc78b296445035f2bCAS | 8667349PubMed |

Cao, M., Nicola, E., Portela, V. M., and Price, C. A. (2006). Regulation of serine protease inhibitor-E2 and plasminogen activator expression and secretion by follicle stimulating hormone and growth factors in non-luteinizing bovine granulosa cells in vitro. Matrix Biol. 25, 342–354.
Regulation of serine protease inhibitor-E2 and plasminogen activator expression and secretion by follicle stimulating hormone and growth factors in non-luteinizing bovine granulosa cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFWlu7c%3D&md5=2f3263f1eb4d350adfd4db811ac8e69fCAS | 16806868PubMed |

Cho, J. H., Itoh, T., Sendai, Y., and Hoshi, H. (2008). Fibroblast growth factor 7 stimulates in vitro growth of oocytes originating from bovine early antral follicles. Mol. Reprod. Dev. 75, 1736–1743.
Fibroblast growth factor 7 stimulates in vitro growth of oocytes originating from bovine early antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyqsrzO&md5=dcd22e01fc789323d909417b51f587cfCAS | 18386286PubMed |

Couse, J. F., Yates, M. M., Deroo, B. J., and Korach, K. S. (2005). Oestrogen receptor-beta is critical to granulosa cell differentiation and the ovulatory response to gonadotropins. Endocrinology 146, 3247–3262.
Oestrogen receptor-beta is critical to granulosa cell differentiation and the ovulatory response to gonadotropins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVait7c%3D&md5=5191b2debd4716a08c2459d762614157CAS | 15831568PubMed |

Durlinger, A. L., Kramer, P., Karels, B., de Jong, F. H., Uilenbroek, J. T., Grootegoed, J. A., and Themmen, A. P. (1999). Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinology 140, 5789–5796.
Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns12htLc%3D&md5=2a5e47ea29cc781241ba9de58057318aCAS | 10579345PubMed |

Farookhi, R., and Desjardins, J. (1986). Luteinizing hormone receptor induction in dispersed granulosa cells requires estrogen. Mol. Cell. Endocrinol. 47, 13–24.
Luteinizing hormone receptor induction in dispersed granulosa cells requires estrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlvVCgsL0%3D&md5=4e124504b50690f89d5c1d503929e895CAS | 3017785PubMed |

Fatehi, A. N., van den Hurk, R., Colenbrander, B., Daemen, A. J., van Tol, H. T., Monteiro, R. M., Roelen, B. A., and Bevers, M. M. (2005). Expression of bone morphogenetic protein 2 (BMP2), BMP4 and BMP receptors in the bovine ovary but absence of effects of BMP2 and BMP4 during IVM on bovine oocyte nuclear maturation and subsequent embryo development. Theriogenology 63, 872–889.
Expression of bone morphogenetic protein 2 (BMP2), BMP4 and BMP receptors in the bovine ovary but absence of effects of BMP2 and BMP4 during IVM on bovine oocyte nuclear maturation and subsequent embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsVWr&md5=1c2505ca482e07aa3862f4a9fa4c7cffCAS | 15629804PubMed |

Forde, N., Mihm, M., Canty, M. J., Zielak, A. E., Baker, P. J., et al. (2008). Differential expression of signal transduction factors in ovarian follicle development: a functional role for betaglycan and FIBP in granulosa cells in cattle. Physiol. Genomics 33, 193–204.
Differential expression of signal transduction factors in ovarian follicle development: a functional role for betaglycan and FIBP in granulosa cells in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1Wis7g%3D&md5=20362d4a91279e46062a0fb2f391042bCAS | 18285519PubMed |

Fortune, J. E. (2003). The early stages of follicular development: activation of primordial follicles and growth of preantral follicles. Anim. Reprod. Sci. 78, 135–163.
The early stages of follicular development: activation of primordial follicles and growth of preantral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksF2gsbc%3D&md5=67d3ba5b1cc630278d9c4e55c8783627CAS | 12818642PubMed |

Fortune, J. E., Rivera, G. M., and Yang, M. Y. (2004). Follicular development: the role of the follicular microenvironment in selection of the dominant follicle. Anim. Reprod. Sci. 82–83, 109–126.
Follicular development: the role of the follicular microenvironment in selection of the dominant follicle.Crossref | GoogleScholarGoogle Scholar | 15271447PubMed |

Garor, R., Abir, R., Erman, A., Felz, C., Nitke, S., and Fisch, B. (2009). Effects of basic fibroblast growth factor on in vitro development of human ovarian primordial follicles. Fertil. Steril. 91, 1967–1975.
Effects of basic fibroblast growth factor on in vitro development of human ovarian primordial follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVeju7k%3D&md5=4aa6824e4ca4fc6250a6243b9c94c382CAS | 18692802PubMed |

Garverick, H. A., Baxter, G., Gong, J., Armstrong, D. G., Campbell, B. K., Gutiérrez, C. G., and Webb, R. (2002). Regulation of expression of ovarian mRNA encoding steroidogenic enzymes and gonadotrophin receptors by FSH and GH in hypogonadotrophic cattle. Reproduction 123, 651–661.
Regulation of expression of ovarian mRNA encoding steroidogenic enzymes and gonadotrophin receptors by FSH and GH in hypogonadotrophic cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvVGgtLs%3D&md5=31a0e179a08352ae35fd2a562b0b8e90CAS | 12006093PubMed |

Garverick, H. A., Juengel, J. L., Smith, P., Heath, D. A., Burkhart, M. N., Perry, G. A., Smith, M. F., and McNatty, K. P. (2010). Development of the ovary and ontongeny of mRNA and protein for P450 aromatase (arom) and oestrogen receptors (ER) alpha and beta during early fetal life in cattle. Anim. Reprod. Sci. 117, 24–33.
Development of the ovary and ontongeny of mRNA and protein for P450 aromatase (arom) and oestrogen receptors (ER) alpha and beta during early fetal life in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyjt7jP&md5=1ec08dfeded35ffd4d2e60904686fe25CAS | 19501990PubMed |

Gigli, I., Cushman, R. A., Wahl, C. M., and Fortune, J. E. (2005). Evidence for a role for anti-Müllerian hormone in the suppression of follicle activation in mouse ovaries and bovine ovarian cortex grafted beneath the chick chorioallantoic membrane. Mol. Reprod. Dev. 71, 480–488.
Evidence for a role for anti-Müllerian hormone in the suppression of follicle activation in mouse ovaries and bovine ovarian cortex grafted beneath the chick chorioallantoic membrane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFSltbg%3D&md5=5f31da8f8c8d39cec641f09a21c82380CAS | 15895366PubMed |

Gilchrist, R. B., Lane, M., and Thompson, J. G. (2008). Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update 14, 159–177.
Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVKmurY%3D&md5=a8a69db87f90fc0b448eac6bc90283eeCAS | 18175787PubMed |

Glister, C., Richards, S. L., and Knight, P. G. (2005). Bone morphogenetic proteins (BMP) -4, -6 and -7 potently suppress basal and luteinizing hormone-induced androgen production by bovine theca interna cells in primary culture: could ovarian hyperandrogenic dysfunction be caused by a defect in thecal BMP signalling? Endocrinology 146, 1883–1892.
Bone morphogenetic proteins (BMP) -4, -6 and -7 potently suppress basal and luteinizing hormone-induced androgen production by bovine theca interna cells in primary culture: could ovarian hyperandrogenic dysfunction be caused by a defect in thecal BMP signalling?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1yqtbk%3D&md5=7af9fc2705c4eee266ed88335ed18828CAS | 15625241PubMed |

Gospodarowicz, D., and Bialecki, H. (1979). Fibroblast and epidermal growth factors are mitogenic agents for cultured granulosa cells of rodent, porcine, and human origin. Endocrinology 104, 757–764.
Fibroblast and epidermal growth factors are mitogenic agents for cultured granulosa cells of rodent, porcine, and human origin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhvFyjsbo%3D&md5=21802df0a53b9c821e05c466a7d96c63CAS | 312195PubMed |

Gutiérrez, C. G., Campbell, B. K., and Webb, R. (1997). Development of a long-term bovine granulosa cell culture system: induction and maintenance of oestradiol production, response to follicle-stimulating hormone, and morphological characteristics. Biol. Reprod. 56, 608–616.
Development of a long-term bovine granulosa cell culture system: induction and maintenance of oestradiol production, response to follicle-stimulating hormone, and morphological characteristics.Crossref | GoogleScholarGoogle Scholar | 9047004PubMed |

Hamel, M., Vanselow, J., Nicola, E. S., and Price, C. A. (2005). Androstenedione increases cytochrome P450 aromatase messenger ribonucleic acid transcripts in nonluteinizing bovine granulosa cells. Mol. Reprod. Dev. 70, 175–183.
Androstenedione increases cytochrome P450 aromatase messenger ribonucleic acid transcripts in nonluteinizing bovine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlSktQ%3D%3D&md5=48fe19d83c887377cd0258c24185095fCAS | 15570613PubMed |

Hampton, J. H., Bader, J. F., Lamberson, W. R., Smith, M. F., Youngquist, R. S., and Garverick, H. A. (2004). Gonadotropin requirements for dominant follicle selection in GnRH agonist-treated cows. Reproduction 127, 695–703.
Gonadotropin requirements for dominant follicle selection in GnRH agonist-treated cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1Ohu7s%3D&md5=81d0c76ad9599872723826a429a71545CAS | 15175506PubMed |

Ikeda, S., Nakamura, K., Kogure, K., Omori, Y., Yamashita, S., Kubota, K., Mizutani, T., Miyamoto, K., and Minegishi, T. (2008). Effect of oestrogen on the expression of luteinizing hormone–human chorionic gonadotropin receptor messenger ribonucleic acid in cultured rat granulosa cells. Endocrinology 149, 1524–1533.
Effect of oestrogen on the expression of luteinizing hormone–human chorionic gonadotropin receptor messenger ribonucleic acid in cultured rat granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVeru74%3D&md5=0767b4eae21d0c83dd3fe4a805b09306CAS | 18174289PubMed |

Itoh, N., and Ornitz, D. M. (2004). Evolution of the Fgf and Fgfr gene families. Trends Genet. 20, 563–569.
Evolution of the Fgf and Fgfr gene families.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlajsLo%3D&md5=0cdbb1deaee499dbd50c00e2125c1711CAS | 15475116PubMed |

Juengel, J. L., Bodensteiner, K. J., Heath, D. A., Hudson, N. L., Moeller, C. L., Smith, P., Galloway, S. M., Davis, G. H., Sawyer, H. R., and McNatty, K. P. (2004). Physiology of GDF9 and BMP15 signalling molecules. Anim. Reprod. Sci. 82–83, 447–460.
Physiology of GDF9 and BMP15 signalling molecules.Crossref | GoogleScholarGoogle Scholar | 15271472PubMed |

Juengel, J. L., Heath, D. A., Quirke, L. D., and McNatty, K. P. (2006). Oestrogen receptor alpha and beta, androgen receptor and progesterone receptor mRNA and protein localisation within the developing ovary and in small growing follicles of sheep. Reproduction 131, 81–92.
Oestrogen receptor alpha and beta, androgen receptor and progesterone receptor mRNA and protein localisation within the developing ovary and in small growing follicles of sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFegsr0%3D&md5=b51535000b193a9834e55019b739657bCAS | 16388012PubMed |

Kayamori, T., Kosaka, N., Miyamoto, A., and Shimizu, T. (2009). The differential pathways of bone morphogenetic protein (BMP)-4 and -7 in the suppression of the bovine granulosa cell apoptosis. Mol. Cell. Biochem. 323, 161–168.
The differential pathways of bone morphogenetic protein (BMP)-4 and -7 in the suppression of the bovine granulosa cell apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2jtrY%3D&md5=6c9f698ae495c37f043162052380ca07CAS | 19083154PubMed |

Kezele, P., Nilsson, E. E., and Skinner, M. K. (2005). Keratinocyte growth factor acts as a mesenchymal factor that promotes ovarian primordial to primary follicle transition. Biol. Reprod. 73, 967–973.
Keratinocyte growth factor acts as a mesenchymal factor that promotes ovarian primordial to primary follicle transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGktb%2FP&md5=7398f1065254ff70d919f14e8e7608c3CAS | 16000551PubMed |

Kissel, H., Timokhina, I., Hardy, M. P., Rothschild, G., Tajima, Y., Soares, V., Angeles, M., Whitlow, S. R., Manova, K., and Besmer, P. (2000). Point mutation in Kit receptor tyrosine kinase reveals essential roles for Kit signalling in spermatogenesis and oogenesis without affecting other Kit responses. EMBO J. 19, 1312–1326.
Point mutation in Kit receptor tyrosine kinase reveals essential roles for Kit signalling in spermatogenesis and oogenesis without affecting other Kit responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXit1GmsLY%3D&md5=bd38e1158b32062fb0d20c1e5625a400CAS | 10716931PubMed |

Knight, P. G., and Glister, C. (2001). Potential local regulatory functions of inhibins, activins and follistatin in the ovary. Reproduction 121, 503–512.
Potential local regulatory functions of inhibins, activins and follistatin in the ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFKgs7Y%3D&md5=70ad7ca34e9e5680e820af3aff2d49efCAS | 11277869PubMed |

Knight, P. G., and Glister, C. (2006). TGF-{beta} superfamily members and ovarian follicle development. Reproduction 132, 191–206.
TGF-{beta} superfamily members and ovarian follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Wjsr0%3D&md5=8f8abe0898be7dc87747b3be1fdbbbe4CAS | 16885529PubMed |

Koos, R. D., and Olson, C. E. (1989). Expression of basic fibroblast growth factor in the rat ovary: detection of mRNA using reverse transcription–polymerase chain reaction amplification. Mol. Endocrinol. 3, 2041–2048.
Expression of basic fibroblast growth factor in the rat ovary: detection of mRNA using reverse transcription–polymerase chain reaction amplification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXpt1Wisg%3D%3D&md5=796c54c2192a133535b48c74e9905c77CAS | 2628738PubMed |

Lavranos, T. C., Rodgers, H. F., Bertoncello, I., and Rodgers, R. J. (1994). Anchorage–independent culture of bovine granulosa cells: the effects of basic fibroblast growth factor and dibutyryl cAMP on cell division and differentiation. Exp. Cell Res. 211, 245–251.
Anchorage–independent culture of bovine granulosa cells: the effects of basic fibroblast growth factor and dibutyryl cAMP on cell division and differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitlKlsLc%3D&md5=1747c0abb61d34f69f2cc9d33b7e6209CAS | 8143770PubMed |

Lee, W. S., Otsuka, F., Moore, R. K., and Shimasaki, S. (2001). Effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat. Biol. Reprod. 65, 994–999.
Effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1Cnu7k%3D&md5=ea45878004b094c555d9e4b6cf44cc17CAS | 11566718PubMed |

Lei, L., Jin, S., Mayo, K. E., and Woodruff, T. K. (2010). The interactions between the stimulatory effect of follicle-stimulating hormone and the inhibitory effect of oestrogen on mouse primordial folliculogenesis. Biol. Reprod. 82, 13–22.
The interactions between the stimulatory effect of follicle-stimulating hormone and the inhibitory effect of oestrogen on mouse primordial folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Wgsr3E&md5=3c98e94eda7888d77aff08a731fc3031CAS | 19641178PubMed |

Luo, W., and Wiltbank, M. C. (2006). Distinct regulation by steroids of messenger RNAs for FSHR and CYP19A1 in bovine granulosa cells. Biol. Reprod. 75, 217–225.
Distinct regulation by steroids of messenger RNAs for FSHR and CYP19A1 in bovine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVWgsLg%3D&md5=34515b00d80ac4b418a157aa3d19d875CAS | 16641147PubMed |

Machado, M. F., Portela, V. M., Price, C. A., da Costa, I. B., Ripamonte, P., Amorim, R. L., and Buratini, J., Jr (2009). Regulation and action of fibroblast growth factor 17 in bovine follicles. J. Endocrinol. 202, 347–353.
Regulation and action of fibroblast growth factor 17 in bovine follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFahtLnN&md5=33ef66f4ea6dbb3a86116e9cc24baf74CAS | 19535432PubMed |

Maier, E., von Hofsten, J., Nord, H., Fernandes, M., Paek, H., Hebert, J. M., and Gunhaga, L. (2010). Opposing Fgf and Bmp activities regulate the specification of olfactory sensory and respiratory epithelial cell fates. Development 137, 1601–1611.
Opposing Fgf and Bmp activities regulate the specification of olfactory sensory and respiratory epithelial cell fates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsFOqs7w%3D&md5=0e5989a3ea2f7790a4deaf4de8b091d9CAS | 20392740PubMed |

Matos, M. H., Lima-Verde, I. B., Bruno, J. B., Lopes, C. A. P., Martins, F. S., Santos, K. D. B., Rocha, R. M. P., Silva, J. R. V., Báo, S. N., and Figueiredo, J. R. (2007). Follicle-stimulating hormone and fibroblast growth factor-2 interact and promote goat primordial follicle development in vitro. Reprod. Fertil. Dev. 19, 677–684.
Follicle-stimulating hormone and fibroblast growth factor-2 interact and promote goat primordial follicle development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1Kgt7o%3D&md5=a4f2405dde9ebc1161eb4b8ec2b2d985CAS | 17601416PubMed |

Matzuk, M. M., Kumar, T. R., Shou, W., Coerver, K. A., Lau, A. L., Behringer, R. R., and Finegold, M. J. (1996). Transgenic models to study the roles of inhibins and activins in reproduction, oncogenesis, and development. Recent Prog. Horm. Res. 51, 123–154.
| 1:CAS:528:DyaK2sXktFKisrw%3D&md5=b769eb8cded38c00e1b58aab4707364bCAS | 8701077PubMed |

McGee, E. A., Chun, S. Y., Lai, S., He, Y., and Hsueh, A. J. (1999). Keratinocyte growth factor promotes the survival, growth, and differentiation of preantral ovarian follicles. Fertil. Steril. 71, 732–738.
Keratinocyte growth factor promotes the survival, growth, and differentiation of preantral ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3hslGgug%3D%3D&md5=935830debc2a73ac5fb24792471185f8CAS | 10202888PubMed |

McLaughlin, M., Bromfield, J. J., Albertini, D. F., and Telfer, E. E. (2010). Activin promotes follicular integrity and oogenesis in cultured preantral bovine follicles. Mol. Hum. Reprod., in press. 10.1093/MOLEHR/GAQ02120203128

McNatty, K. P., Heath, D. A., Lundy, T., Fidler, A. E., Quirke, L., O’Connell, A., Smith, P., Groome, N., and Tisdall, D. J. (1999). Control of early ovarian follicular development. J. Reprod. Fertil. Suppl. 54, 3–16.
| 1:CAS:528:DyaK1MXnslSisbs%3D&md5=d376f1081a3ea50322770a75accecb24CAS | 10692841PubMed |

Mihm, M., and Evans, A. C. (2008). Mechanisms for dominant follicle selection in monovulatory species: a comparison of morphological, endocrine and intraovarian events in cows, mares and women. Reprod. Domest. Anim. 43, 48–56.
Mechanisms for dominant follicle selection in monovulatory species: a comparison of morphological, endocrine and intraovarian events in cows, mares and women.Crossref | GoogleScholarGoogle Scholar | 18638104PubMed |

Moore, R. K., and Shimasaki, S. (2005). Molecular biology and physiological role of the oocyte factor, BMP-15. Mol. Cell. Endocrinol. 234, 67–73.
Molecular biology and physiological role of the oocyte factor, BMP-15.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1SqtLg%3D&md5=3bbf83bb6dec09d2e8d43e1c779c5f4eCAS | 15836954PubMed |

Nilsson, E. E., and Skinner, M. K. (2003). Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development. Biol. Reprod. 69, 1265–1272.
Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsV2nsLw%3D&md5=58f695b697d82026183dd8fa3d57e339CAS | 12801979PubMed |

Nilsson, E. E., and Skinner, M. K. (2009). Progesterone regulation of primordial follicle assembly in bovine fetal ovaries. Mol. Cell. Endocrinol. 313, 9–16.
Progesterone regulation of primordial follicle assembly in bovine fetal ovaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1WqurvL&md5=6d7c62ba1d06e155ee92b75ed27b900cCAS | 19747959PubMed |

Nilsson, E., Parrott, J. A., and Skinner, M. K. (2001). Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol. Cell. Endocrinol. 175, 123–130.
Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivFeitrs%3D&md5=07d46495cd43cc09b666e799c3665591CAS | 11325522PubMed |

Nilsson, E., Rogers, N., and Skinner, M. K. (2007). Actions of anti-Müllerian hormone on the ovarian transcriptome to inhibit primordial-to-primary follicle transition. Reproduction 134, 209–221.
Actions of anti-Müllerian hormone on the ovarian transcriptome to inhibit primordial-to-primary follicle transition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKlsrfO&md5=62195c7add976bc48a05757821a6e8acCAS | 17660231PubMed |

Ornitz, D. M., Xu, J., Colvin, J. S., McEwen, D. G., MacArthur, C. A., Coulier, F., Gao, G., and Goldfarb, M. (1996). Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 271, 15 292–15 297.
Receptor specificity of the fibroblast growth factor family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjvVWlsrY%3D&md5=4134aa3b092ac05cf13f710c3e066b04CAS |

Otsuka, F., and Shimasaki, S. (2002). A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell Kit ligand: its role in regulating granulosa cell mitosis. Proc. Natl. Acad. Sci. USA 99, 8060–8065.
A negative feedback system between oocyte bone morphogenetic protein 15 and granulosa cell Kit ligand: its role in regulating granulosa cell mitosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvVGjtb4%3D&md5=476b74222ef6daee576bec37d82ad29eCAS |

Parrott, J. A., and Skinner, M. K. (1998). Developmental and hormonal regulation of keratinocyte growth factor expression and action in the ovarian follicle. Endocrinology 139, 228–235.
Developmental and hormonal regulation of keratinocyte growth factor expression and action in the ovarian follicle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtFKntA%3D%3D&md5=f25ee6c4081b8a6957538dc59a08e229CAS | 9421419PubMed |

Parrott, J. A., and Skinner, M. K. (1999). Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology 140, 4262–4271.
Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslSru7k%3D&md5=6b6884560e2ee4e92a6eb5db0d736867CAS | 10465300PubMed |

Parrott, J. A., and Skinner, M. K. (2000). Kit ligand actions on ovarian stromal cells: effects on theca cell recruitment and steroid production. Mol. Reprod. Dev. 55, 55–64.
Kit ligand actions on ovarian stromal cells: effects on theca cell recruitment and steroid production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFyntrs%3D&md5=cd17aae22744adf6005452c6a6e16373CAS | 10602274PubMed |

Parrott, J. A., Vigne, J. L., Chu, B. Z., and Skinner, M. K. (1994). Mesenchymal–epithelial interactions in the ovarian follicle involve keratinocyte and hepatocyte growth factor production by thecal cells and their action on granulosa cells. Endocrinology 135, 569–575.
Mesenchymal–epithelial interactions in the ovarian follicle involve keratinocyte and hepatocyte growth factor production by thecal cells and their action on granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltVSltLY%3D&md5=f966b708e86874bf2e11252dd646eed1CAS | 8033804PubMed |

Portela, V. M., Machado, M., Buratini, J., Jr, Zamberlam, G., Amorim, R. L., Goncalves, P., and Price, C. A. (2010). Expression and function of fibroblast growth factor 18 in the ovarian follicle in cattle. Biol. Reprod. 83, 339–346.
Expression and function of fibroblast growth factor 18 in the ovarian follicle in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyrsrrI&md5=cfb92f3f11a8691f13814c66f8eeaee1CAS | 20484739PubMed |

Rosenfeld, C. S., Wagner, J. S., Roberts, R. M., and Lubahn, D. B. (2001). Intraovarian actions of oestrogen. Reproduction 122, 215–226.
Intraovarian actions of oestrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFWjtL0%3D&md5=a1ae2b637f80ccb4917a84c55486bbb0CAS | 11467972PubMed |

Sawyer, H. R., Smith, P., Heath, D. A., Juengel, J. L., Wakefield, S. J., and McNatty, K. P. (2002). Formation of ovarian follicles during fetal development in sheep. Biol. Reprod. 66, 1134–1150.
Formation of ovarian follicles during fetal development in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlClu70%3D&md5=58b399dfde7fe942794fe556a87e3d17CAS | 11906935PubMed |

Schayek, H., Seti, H., Greenberg, N. M., Sun, S., Werner, H., and Plymate, S. R. (2010). Differential regulation of insulin-like growth factor-I receptor gene expression by wild type and mutant androgen receptor in prostate cancer cells. Mol. Cell. Endocrinol. 323, 239–245.
Differential regulation of insulin-like growth factor-I receptor gene expression by wild type and mutant androgen receptor in prostate cancer cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlyhtLk%3D&md5=ce7d667b55b5cc490e05127e6db9f3fbCAS | 20417685PubMed |

Shi, J., Yoshino, O., Osuga, Y., Nishii, O., Yano, T., and Taketani, Y. (2010). Bone morphogenetic protein 7 (BMP-7) increases the expression of follicle-stimulating hormone (FSH) receptor in human granulosa cells. Fertil. Steril. 93, 1273–1279.
Bone morphogenetic protein 7 (BMP-7) increases the expression of follicle-stimulating hormone (FSH) receptor in human granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVaqtbc%3D&md5=d1e0cb002f5b7d84812993baba6c9ebeCAS | 19108831PubMed |

Silva, C. C., and Knight, P. G. (1998). Modulatory actions of activin-A and follistatin on the developmental competence of in vitro-matured bovine oocytes. Biol. Reprod. 58, 558–565.
Modulatory actions of activin-A and follistatin on the developmental competence of in vitro-matured bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXot1Wrsg%3D%3D&md5=6073409f8dd68cd7dc8c10613372bf4aCAS | 9475414PubMed |

Silva, J. M., and Price, C. A. (2000). Effect of follicle-stimulating hormone on steroid secretion and messenger ribonucleic acids encoding cytochromes P450 aromatase and cholesterol side-chain cleavage in bovine granulosa cells in vitro. Biol. Reprod. 62, 186–191.
Effect of follicle-stimulating hormone on steroid secretion and messenger ribonucleic acids encoding cytochromes P450 aromatase and cholesterol side-chain cleavage in bovine granulosa cells in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhslKkug%3D%3D&md5=04d9b41e310396cbe514a1572167a8bcCAS | 10611084PubMed |

Skinner, M. K. (2005). Regulation of primordial follicle assembly and development. Hum. Reprod. Update 11, 461–471.
Regulation of primordial follicle assembly and development.Crossref | GoogleScholarGoogle Scholar | 16006439PubMed |

Spicer, L. J., and Aad, P. Y. (2007). Insulin-like growth factor (IGF) 2 stimulates steroidogenesis and mitosis of bovine granulosa cells through the IGF-1 receptor: role of follicle-stimulating hormone and IGF2 receptor. Biol. Reprod. 77, 18–27.
Insulin-like growth factor (IGF) 2 stimulates steroidogenesis and mitosis of bovine granulosa cells through the IGF-1 receptor: role of follicle-stimulating hormone and IGF2 receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntV2gsbo%3D&md5=e2300210b66b65f0cfbb3e33fea69b29CAS | 17360960PubMed |

Spicer, L. J., Chamberlain, C. S., and Maciel, S. M. (2002). Influence of gonadotropins on insulin- and insulin-like growth factor-I (IGF-I)-induced steroid production by bovine granulosa cells. Domest. Anim. Endocrinol. 22, 237–254.
Influence of gonadotropins on insulin- and insulin-like growth factor-I (IGF-I)-induced steroid production by bovine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktVaqur8%3D&md5=d9e1e2d407f1e2a0d10d700885addacaCAS | 12044613PubMed |

Spicer, L. J., Voge, J. L., and Allen, D. T. (2004). Insulin-like growth factor-II stimulates steroidogenesis in cultured bovine thecal cells. Mol. Cell. Endocrinol. 227, 1–7.
Insulin-like growth factor-II stimulates steroidogenesis in cultured bovine thecal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVKrt7c%3D&md5=6cab66c1f2c7696201d490fbc850617dCAS | 15501579PubMed |

Stirling, D., Waterman, M. R., and Simpson, E. R. (1991). Expression of mRNA encoding basic fibroblast growth factor (bFGF) in bovine corpora lutea and cultured luteal cells. J. Reprod. Fertil. 91, 1–8.
Expression of mRNA encoding basic fibroblast growth factor (bFGF) in bovine corpora lutea and cultured luteal cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXksValt7k%3D&md5=cdf6f948e87abca856a094e25767dbdeCAS | 1847419PubMed |

Sudo, N., Shimizu, T., Kawashima, C., Kaneko, E., Tetsuka, M., and Miyamoto, A. (2007). Insulin-like growth factor-I (IGF-I) system during follicle development in the bovine ovary: relationship among IGF-I, type 1 IGF receptor (IGFR-1) and pregnancy-associated plasma protein-A (PAPP-A). Mol. Cell. Endocrinol. 264, 197–203.
Insulin-like growth factor-I (IGF-I) system during follicle development in the bovine ovary: relationship among IGF-I, type 1 IGF receptor (IGFR-1) and pregnancy-associated plasma protein-A (PAPP-A).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsl2huw%3D%3D&md5=f753d9579ff714d8f1e20ec2f24a83d4CAS | 17116363PubMed |

Sugiura, K., Su, Y.-Q., Diaz, F. J., Pangas, S. A., Sharma, S., Wigglesworth, K., O’Brien, M. J., Matzuk, M. M., Shimasaki, S., and Eppig, J. J. (2007). Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development 134, 2593–2603.
Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFeju7k%3D&md5=4392b629501b9f3a8ac1471b823d500fCAS | 17553902PubMed |

Thomas, F. H., Campbell, B. K., Armstrong, D. G., and Telfer, E. E. (2007). Effects of IGF-I bioavailability on bovine preantral follicular development in vitro. Reproduction 133, 1121–1128.
Effects of IGF-I bioavailability on bovine preantral follicular development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVGmsr8%3D&md5=abfd64fe4f78bbccddd84b53187565fcCAS | 17636166PubMed |

Trombly, D. J., Woodruff, T. K., and Mayo, K. E. (2009). Suppression of Notch signalling in the neonatal mouse ovary decreases primordial follicle formation. Endocrinology 150, 1014–1024.
Suppression of Notch signalling in the neonatal mouse ovary decreases primordial follicle formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1Sgt74%3D&md5=2a5165095d54186053f8cfd13dee38abCAS | 18818300PubMed |

Valve, E., Penttila, T. L., Paranko, J., and Harkonen, P. (1997). FGF-8 is expressed during specific phases of rodent oocyte and spermatogonium development. Biochem. Biophys. Res. Commun. 232, 173–177.
FGF-8 is expressed during specific phases of rodent oocyte and spermatogonium development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvVyltLs%3D&md5=b1d01c09f06d716bf385149a218c5c43CAS | 9125125PubMed |

van Wezel, I. L., Umapathysivam, K., Tilley, W. D., and Rodgers, R. J. (1995). Immunohistochemical localization of basic fibroblast growth factor in bovine ovarian follicles. Mol. Cell. Endocrinol. 115, 133–140.
Immunohistochemical localization of basic fibroblast growth factor in bovine ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslKmsL4%3D&md5=08c5276ff36336d198b5af5636a02e98CAS | 8824888PubMed |

van Wijk, B., van den Berg, G., Abu-Issa, R., Barnett, P., van der Velden, S., Schmidt, M., Ruijter, J. M., Kirby, M. L., Moorman, A. F. M., and van den Hoff, M. J. B. (2009). Epicardium and myocardium separate from a common precursor pool by crosstalk between bone morphogenetic protein- and fibroblast growth factor-signalling pathways. Circ. Res. 105, 431–441.
Epicardium and myocardium separate from a common precursor pool by crosstalk between bone morphogenetic protein- and fibroblast growth factor-signalling pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVekt7%2FN&md5=676e1196422d34010e845ce404015868CAS | 19628790PubMed |

Vendola, K. A., Zhou, J., Adesanya, O. O., Weil, S. J., and Bondy, C. A. (1998). Androgens stimulate early stages of follicular growth in the primate ovary. J. Clin. Invest. 101, 2622–2629.
Androgens stimulate early stages of follicular growth in the primate ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktVSitbw%3D&md5=98dcdc1c31fcaabd422cc704b25e6563CAS | 9637695PubMed |

Vernon, R. K., and Spicer, L. J. (1994). Effects of basic fibroblast growth factor and heparin on follicle-stimulating hormone-induced steroidogenesis by bovine granulosa cells. J. Anim. Sci. 72, 2696–2702.
| 1:CAS:528:DyaK2cXmsVKksL4%3D&md5=ba6d97f7d2cf9c8f9da15d06d28f71ecCAS | 7883629PubMed |

Wandji, S. A., Pelletier, G., and Sirard, M. A. (1992a). Ontogeny and cellular localization of 125I-labelled basic fibroblast growth factor and 125I-labelled epidermal growth factor binding sites in ovaries from bovine fetuses and neonatal calves. Biol. Reprod. 47, 807–813.
Ontogeny and cellular localization of 125I-labelled basic fibroblast growth factor and 125I-labelled epidermal growth factor binding sites in ovaries from bovine fetuses and neonatal calves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xmt1Ojtbo%3D&md5=d9ec1bc4bed9f8e7285393c77f99bdc5CAS | 1477206PubMed |

Wandji, S. A., Pelletier, G., and Sirard, M. A. (1992b). Ontogeny and cellular localization of 125I-labelled insulin-like growth factor-I, 125I-labelled follicle-stimulating hormone, and 125I-labelled human chorionic gonadotropin binding sites in ovaries from bovine fetuses and neonatal calves. Biol. Reprod. 47, 814–822.
Ontogeny and cellular localization of 125I-labelled insulin-like growth factor-I, 125I-labelled follicle-stimulating hormone, and 125I-labelled human chorionic gonadotropin binding sites in ovaries from bovine fetuses and neonatal calves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmsVKjtrk%3D&md5=88738a677c6a66757c63e80daeaa696fCAS | 1477207PubMed |

Wang, H., Andoh, K., Hagiwara, H., Xiaowei, L., Kikuchi, N., Abe, Y., Yamada, K., Fatima, R., and Mizunuma, H. (2001). Effect of adrenal and ovarian androgens on type 4 follicles unresponsive to FSH in immature mice. Endocrinology 142, 4930–4936.
Effect of adrenal and ovarian androgens on type 4 follicles unresponsive to FSH in immature mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslGqu7s%3D&md5=47ffc75ac10cb2d39afa34154e6c4f5aCAS | 11606461PubMed |

Webb, R., and Campbell, B. K. (2007). Development of the dominant follicle: mechanisms of selection and maintenance of oocyte quality. Soc. Reprod. Fertil. Suppl. 64, 141–163.
| 1:CAS:528:DC%2BD1cXpvVyrs7w%3D&md5=315c102effb6fe6da5d7bc939d5836e0CAS | 17491145PubMed |

Webb, R., Garnsworthy, P. C., Campbell, B. K., and Hunter, M. G. (2007). Intra-ovarian regulation of follicular development and oocyte competence in farm animals. Theriogenology 68, S22–S29.
Intra-ovarian regulation of follicular development and oocyte competence in farm animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaitbs%3D&md5=4a1234be64e4751417156a73d614e068CAS | 17540442PubMed |

Yamoto, M., Shikone, T., and Nakano, R. (1993). Opposite effects of basic fibroblast growth factor on gonadotrophin-stimulated steroidogenesis in rat granulosa cells. Endocr. J. 40, 691–697.
Opposite effects of basic fibroblast growth factor on gonadotrophin-stimulated steroidogenesis in rat granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmt1arurs%3D&md5=beb8b9d264a7fca4546f8e29bc32fc93CAS | 7951538PubMed |

Yang, M. Y., and Fortune, J. E. (2006). Testosterone stimulates the primary-to-secondary follicle transition in bovine follicles in vitro. Biol. Reprod. 75, 924–932.
Testosterone stimulates the primary-to-secondary follicle transition in bovine follicles in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yjtr7P&md5=179f0ba28028d02c164e755565b21779CAS | 16943368PubMed |

Yang, M. Y., and Fortune, J. E. (2008). The capacity of primordial follicles in fetal bovine ovaries to initiate growth in vitro develops during mid-gestation and is associated with meiotic arrest of oocytes. Biol. Reprod. 78, 1153–1161.
The capacity of primordial follicles in fetal bovine ovaries to initiate growth in vitro develops during mid-gestation and is associated with meiotic arrest of oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVWkur8%3D&md5=6b4df08a2875c308636d7a260859020dCAS | 18305225PubMed |

Yoshida, H., Takakura, N., Kataoka, H., Kunisada, T., Okamura, H., and Nishikawa, S. I. (1997). Stepwise requirement of c-kit tyrosine kinase in mouse ovarian follicle development. Dev. Biol. 184, 122–137.
Stepwise requirement of c-kit tyrosine kinase in mouse ovarian follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivV2it7Y%3D&md5=e40ca58d4ed66393c6383af20eae146bCAS | 9142989PubMed |

Zhang, X., Ibrahimi, O. A., Olsen, S. K., Umemori, H., Mohammadi, M., and Ornitz, D. M. (2006). Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J. Biol. Chem. 281, 15 694–15 700.
Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xlt1Cktrc%3D&md5=bee3b67bb7bef8056bc233547f556513CAS |