Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Infection-induced autoantibodies and pregnancy related pathology: an animal model

Vladimir Petrušić A B , Irena Živković A , Lina Muhandes A , Rajna Dimitrijević A , Marijana Stojanović A and Ljiljana Dimitrijević A
+ Author Affiliations
- Author Affiliations

A Department of Research and Development, Institute of Virology, Vaccines and Sera ‘Torlak’, Vojvode Stepe 458, 11152 Belgrade, Serbia.

B Corresponding author. Email: vzpetrusic@gmail.com

Reproduction, Fertility and Development 26(4) 578-586 https://doi.org/10.1071/RD13057
Submitted: 21 February 2013  Accepted: 28 March 2013   Published: 9 May 2013

Abstract

In addition to being the main cause of mortality worldwide, bacterial and viral infections can be the cause of autoimmune and pregnancy disorders as well. The production of autoantibodies during infection can be explained by various mechanisms, including molecular mimicry, bystander cell activation and epitope spreading. Conversely, bacterial and viral infections during pregnancy are especially dangerous for the fetus. It is documented that infection-induced inflammatory processes mediated by Toll-like receptors (TLR) represent the main cause of preterm labour. We used two crucial bacterial components and TLR ligands, namely peptidoglycan and lipopolysaccharide, to stimulate BALB/c mice before immunisation with tetanus toxoid. Tetanus toxoid is an inactive form of the toxin produced by bacterium Clostridium tetani and shares structural similarity with plasma protein β2-glycoprotein I. Treatment with peptidoglycan and lipopolysaccharide in combination with tetanus toxoid induced the production of pathological autoantibodies, different fluctuations in natural autoantibodies and different types of reproductive pathology in treated animals, with peptidoglycan treatment being more deleterious. We propose that the production of pathological autoantibodies, TLR activation and changes in natural autoantibodies play crucial roles in infection-induced reproductive pathology in our animal model.

Additional keywords: fecundity, fertility, lipopolysaccharide, peptidoglycan, reproductive pathology.


References

Abrahams, V. M., Bole-Aldo, P., Kim, Y. M., Straszewski-Chavez, S. L., Chaiworapongsa, T., Romero, R., and Mor, G. (2004). Divergent trophoblast responses to bacterial products mediated by TLRs. J. Immunol. 173, 4286–4296.
| 15383557PubMed |

Agar, C., de Groot, P. G., Mörgelin, M., Monk, S. D., van Os, G., Levels, J. H., de Laat, B., Urbanus, R. T., Herwald, H., van der Poll, T., and Meijers, J. C. (2011). β2-Glycoprotein I: a novel component of innate immunity. Blood 117, 6939–6947.
β2-Glycoprotein I: a novel component of innate immunity.Crossref | GoogleScholarGoogle Scholar | 21454452PubMed |

Ang, C. W., Jacobs, B. C., and Laman, J. D. (2004). The Guillain-Barré syndrome: a true case of molecular mimicry. Trends Immunol. 25, 61–66.
The Guillain-Barré syndrome: a true case of molecular mimicry.Crossref | GoogleScholarGoogle Scholar | 15102364PubMed |

Avrameas, S., Ternynck, T., Tsonis, T., and Lymberi, P. (2007). Naturally occuring B-cell autoreactivity: a critical overview. J. Autoimmun. 29, 213–218.
Naturally occuring B-cell autoreactivity: a critical overview.Crossref | GoogleScholarGoogle Scholar | 17888629PubMed |

Barzilai, O., Sherer, Y., Ram, M., Izhaky, D., Anaya, J. M., and Shoenfeld, Y. (2007). Epstein–Barr virus and cytomegalovirus in autoimmune diseases: are they truly notorious? A preliminary report. Ann. N. Y. Acad. Sci. 1108, 567–577.
Epstein–Barr virus and cytomegalovirus in autoimmune diseases: are they truly notorious? A preliminary report.Crossref | GoogleScholarGoogle Scholar | 17894021PubMed |

Blank, M., Krause, I., Fridkin, M., Keller, N., Kopolovic, J., Goldberg, I., Tobar, A., and Shoenfeld, Y. (2002). Bacterial induction of autoantibodies to β2-glycoprotein-I accounts for the infectious etiology of antiphospholipid syndrome. J. Clin. Invest. 109, 797–804.
| 11901188PubMed |

Blank, M., Anafi, L., Zandman-Goddard, G., Krause, I., Goldman, S., Shalev, E., Cervera, R., Font, J., Fridkin, M., Thiesen, H. J., and Shoenfeld, Y. (2007). The efficacy of specific IVIG anti-idiotypic antibodies in antiphospholipid syndrome (APS): trophoblast invasiveness and APS animal model. Int. Immunol. 19, 857–865.
The efficacy of specific IVIG anti-idiotypic antibodies in antiphospholipid syndrome (APS): trophoblast invasiveness and APS animal model.Crossref | GoogleScholarGoogle Scholar | 17576752PubMed |

Bogdanos, D. P., Smyk, D. S., Invernizzi, P., Rigopoulou, E. I., Blank, M., Pouria, S., and Shoenfeld, Y. (2012). Infectome: a platform to trace infectious triggers of autoimmunity. Autoimmun. Rev. , .
Infectome: a platform to trace infectious triggers of autoimmunity.Crossref | GoogleScholarGoogle Scholar | 23266520PubMed |

Coutinho, A. (1989). Beyond clonal selection and network. Immunol. Rev. 110, 63–88.
Beyond clonal selection and network.Crossref | GoogleScholarGoogle Scholar | 2676849PubMed |

Coutinho, A., Kazatchkine, M. D., and Avrameas, S. (1995). Natural autoantibodies. Curr. Opin. Immunol. 7, 812–818.
Natural autoantibodies.Crossref | GoogleScholarGoogle Scholar | 8679125PubMed |

Delogu, L. G., Deidda, S., Delitala, G., and Manetti, R. (2011). Infectious diseases and autoimmunity. J. Infect. Dev. Ctries 5, 679–687.
Infectious diseases and autoimmunity.Crossref | GoogleScholarGoogle Scholar | 21997935PubMed |

Dimitrijević, L., Radulović, M., Ćirić, B., Odrljin, T., Jankov, R. M., and Marzari, R. (1992). Immunochemical characterisation of a murine monoclonal anti-idiotypic antibody. J. Immunoassay 13, 181–196.
Immunochemical characterisation of a murine monoclonal anti-idiotypic antibody.Crossref | GoogleScholarGoogle Scholar | 1385481PubMed |

Dimitrijević, L. A., Radulović, M. I., Ćirić, B. P., Petrićević, M. M., Inić, A. B., Nikolić, D. N., and Apostolski, S. (1999). Human monoclonal IgM DJ binds to ssDNA and human commensal bacteria. Hum. Antibodies 9, 37–45.
| 10331184PubMed |

Dimitrijević, L., Živković, I., Stojanović, M., Petrušić, V., and Živančević-Simonović, S. (2012). Vaccine model of antiphospholipid syndrome induced by tetanus vaccine. Lupus 21, 195–202.
Vaccine model of antiphospholipid syndrome induced by tetanus vaccine.Crossref | GoogleScholarGoogle Scholar | 22235053PubMed |

Harel, M., Aron-Maora, A., Sherera, Y., Blank, M., and Shoenfeld, Y. (2005). The infectious etiology of the antiphospholipid syndrome: links between infection and autoimmunity. Immunobiology 210, 743–747.
The infectious etiology of the antiphospholipid syndrome: links between infection and autoimmunity.Crossref | GoogleScholarGoogle Scholar | 16325492PubMed |

Holmlund, U., Cebers, G., Dahlfors, A. R., Sandstedt, B., Bremme, K., Ekström, E. S., and Scheynius, A. (2002). Expression and regulation of the pattern recognition receptors Toll-like receptor-2 and Toll-like receptor-4 in the human placenta. Immunology 107, 145–151.
Expression and regulation of the pattern recognition receptors Toll-like receptor-2 and Toll-like receptor-4 in the human placenta.Crossref | GoogleScholarGoogle Scholar | 12225373PubMed |

Ishii, K. J., Koyama, S., Nakagawa, A., Coban, C., and Akira, S. (2008). Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe 3, 352–363.
Host innate immune receptors and beyond: making sense of microbial infections.Crossref | GoogleScholarGoogle Scholar | 18541212PubMed |

Ivanović, V., Popovic, L., Kovacina, K., Dimitrijevic, L., Ilic, D., Pirozkov, A., and Baltic, V. (1990). Detection of cross-reacting idiotypes in sera of lymphoma patients by inverse monoclonal radioimmunoassay. Acta Haematol. 84, 64–67.
Detection of cross-reacting idiotypes in sera of lymphoma patients by inverse monoclonal radioimmunoassay.Crossref | GoogleScholarGoogle Scholar | 2120887PubMed |

Kawai, T., and Akira, S. (2009). The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 21, 317–337.
The roles of TLRs, RLRs and NLRs in pathogen recognition.Crossref | GoogleScholarGoogle Scholar | 19246554PubMed |

Kivity, S., Agmon-Levin, N., Blank, M., and Shoenfeld, Y. (2009). Infections and autoimmunity: friends or foes? Trends Immunol. 30, 409–414.
Infections and autoimmunity: friends or foes?Crossref | GoogleScholarGoogle Scholar | 19643667PubMed |

Koga, K., Aldo, P. B., and Mor, G. (2009). Toll-like receptors and pregnancy: trophoblast as modulators of the immune response. J. Obstet. Gynaecol. Res. 35, 191–202.
Toll-like receptors and pregnancy: trophoblast as modulators of the immune response.Crossref | GoogleScholarGoogle Scholar | 19335792PubMed |

Kumazaki, K., Nakayama, I., Yanagihara, I., Suehara, N., and Wada, Y. (2004). Immunohistochemical distribution of Toll-like receptor 4 in term and preterm human placentas from normal and complicated pregnancy including chorioamnionitis. Hum. Pathol. 35, 47–54.
Immunohistochemical distribution of Toll-like receptor 4 in term and preterm human placentas from normal and complicated pregnancy including chorioamnionitis.Crossref | GoogleScholarGoogle Scholar | 14745724PubMed |

Kusumoto, S., Fukase, K., and Shiba, T. (2010). Key structures of bacterial peptidoglycan and lipopolysaccharide triggering the innate immune system of higher animals: chemical synthesis and functional studies. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 86, 322–337.
Key structures of bacterial peptidoglycan and lipopolysaccharide triggering the innate immune system of higher animals: chemical synthesis and functional studies.Crossref | GoogleScholarGoogle Scholar | 20431259PubMed |

Levy, Y., Almog, O., Gorshtein, A., and Shoenfeld, Y. (2006). The environment and antiphospholipid syndrome. Lupus 15, 784–790.
The environment and antiphospholipid syndrome.Crossref | GoogleScholarGoogle Scholar | 17153851PubMed |

Liu, T., Matsuguchi, T., Tsuboi, N., Yajima, T., and Yoshikai, Y. (2002). Differences in expression of toll-like receptors and their reactivities in dendritic cells in BALB/c and C57BL/6 mice. Infect. Immun. 70, 6638–6645.
Differences in expression of toll-like receptors and their reactivities in dendritic cells in BALB/c and C57BL/6 mice.Crossref | GoogleScholarGoogle Scholar | 12438336PubMed |

Medzhitov, R. (2001). Toll-like receptors and innate immunity. Natl Rev. 1, 135–145.
Toll-like receptors and innate immunity.Crossref | GoogleScholarGoogle Scholar |

Meroni, P. L. (2008). Pathogenesis of the antiphospholipid syndrome: an additional example of the mosaic of autoimmunity. J. Autoimmun. 30, 99–103.
Pathogenesis of the antiphospholipid syndrome: an additional example of the mosaic of autoimmunity.Crossref | GoogleScholarGoogle Scholar | 18194729PubMed |

Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J., and Hill, A. M. (2000). M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164, 6166–6173.
| 10843666PubMed |

Miyakis, S., Giannakopoulos, B., and Krilis, S. A. (2004). Beta 2 glycoprotein I-function in health and disease. Thromb. Res. 114, 335–346.
Beta 2 glycoprotein I-function in health and disease.Crossref | GoogleScholarGoogle Scholar | 15507263PubMed |

Miyakis, S., Lockshin, M. D., Atsumi, T., Branch, D. W., Brey, R. L., Cervera, R., Derksen, R. H., De Groot, P. G., Koike, T., Meroni, P. L., Reber, G., Shoenfeld, Y., Tincani, A., Vlachoyiannopoulos, P. G., and Krilis, S. A. (2006). International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb. Haemost. 4, 295–306.
International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS).Crossref | GoogleScholarGoogle Scholar | 16420554PubMed |

Molina, V., and Shoenfeld, Y. (2005). Infection, vaccines and other environmental triggers of autoimmunity. Autoimmunity 38, 235–245.
Infection, vaccines and other environmental triggers of autoimmunity.Crossref | GoogleScholarGoogle Scholar | 16126512PubMed |

Mor, G. (2008). The role of Toll-like receptors in trophoblast–immune interaction. Ann. N. Y. Acad. Sci. 1127, 121–128.
The role of Toll-like receptors in trophoblast–immune interaction.Crossref | GoogleScholarGoogle Scholar | 18443339PubMed |

Nizet, V., and Esko, J. D. (2009). Bacterial and viral infections. In ‘Essentials of Glycobiology’, 2nd edn. (Eds A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi, G. V. Hart and M. E. Etzler.) pp. 537–553. (Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY.)

Pellati, D., Mylonakis, I., Bertoloni, G., Fiore, C., Andrisani, A., Ambrosini, G., and Armanini, D. (2008). Genital tract infections and infertility. Eur. J. Obstet. Gynecol. Reprod. Biol. 140, 3–11.
Genital tract infections and infertility.Crossref | GoogleScholarGoogle Scholar | 18456385PubMed |

Petrušić, V., Živković, I., Stojanović, M., Stojićević, I., Marinković, E., Inić-Kanada, A., and Dimitijević, L. (2011). Antigenic specificity and expression of a natural idiotope on human pentameric and hexameric IgM polymers. Immunol. Res. 51, 97–107.
Antigenic specificity and expression of a natural idiotope on human pentameric and hexameric IgM polymers.Crossref | GoogleScholarGoogle Scholar | 21786026PubMed |

Radulovic, M., Ciric, B., Jurisic, A., Jankov, R., Apostolski, S., Zivancevic-Simonovic, S., and Dimitrijevic, Lj. (1997). Expression of Y7 idiotope on IgM molecules from cord sera. In ‘Immune regulation in Health and Disease’. (Eds M. Lukic, M. Mostarica-Stojkovic, K. Cuperlovic and M. Colic.) pp. 205–211. (Academic Press: London, UK.)

Rand, J. H., Wu, X. X., Andree, H. A., Lockwood, C. J., Guller, S., Scher, J., and Harpel, P. C. (1997). Pregnancy loss in the antiphospholipid-antibody syndrome: a possible thrombogenic mechanism. N. Engl. J. Med. 337, 154–160.
Pregnancy loss in the antiphospholipid-antibody syndrome: a possible thrombogenic mechanism.Crossref | GoogleScholarGoogle Scholar | 9219701PubMed |

Raschi, E., Borghi, M. O., Grossi, C., Broggini, V., Pierangeli, S., and Meroni, P. L. (2008). Toll-like receptors: another player in the pathogenesis of the anti-phospholipid syndrome. Lupus 17, 938–943.
Toll-like receptors: another player in the pathogenesis of the anti-phospholipid syndrome.Crossref | GoogleScholarGoogle Scholar |

Raynor, B. D., Bonney, E. A., Jang, K. T., Coto, W., and Garcia, M. S. (2004). Preeclampsia and Chlamydia pneumoniae: is there a link? Hypertens. Pregnancy 23, 129–134.
Preeclampsia and Chlamydia pneumoniae: is there a link?Crossref | GoogleScholarGoogle Scholar | 15369646PubMed |

Riley, J. K., and Nelson, D. M. (2010). Toll-like receptors in pregnancy disorders and placental dysfunction. Clin. Rev. Allergy Immunol. 39, 185–193.
Toll-like receptors in pregnancy disorders and placental dysfunction.Crossref | GoogleScholarGoogle Scholar | 19866377PubMed |

Rose, N. R. (2009). Myocarditis: infection versus autoimmunity. J. Clin. Immunol. 29, 730–737.
Myocarditis: infection versus autoimmunity.Crossref | GoogleScholarGoogle Scholar | 19826933PubMed |

Seite, J. F., Shoenfeld, Y., Youinou, P., and Hillion, S. (2008). What is the contents of the magic draft IVIg? Autoimmun. Rev. 7, 435–439.
What is the contents of the magic draft IVIg?Crossref | GoogleScholarGoogle Scholar | 18558358PubMed |

Stojanović, M., Zivković, I., Inić-Kanada, A., Petrusić, V., Mićić, M., and Dimitrijević, L. (2009). The context of tetanus toxoid application influences the outcome of antigen-specific and self-directed humoral immune response. Microbiol. Immunol. 53, 89–100.
The context of tetanus toxoid application influences the outcome of antigen-specific and self-directed humoral immune response.Crossref | GoogleScholarGoogle Scholar | 19291092PubMed |

Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu. Rev. Immunol. 21, 335–376.
Toll-like receptors.Crossref | GoogleScholarGoogle Scholar | 12524386PubMed |

Trinchieri, G., and Sher, A. (2007). Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 7, 179–190.
Cooperation of Toll-like receptor signals in innate immune defence.Crossref | GoogleScholarGoogle Scholar | 17318230PubMed |

Tsan, M. F. (2006). Toll-like receptors, inflammation and cancer. Semin. Cancer Biol. 16, 32–37.
Toll-like receptors, inflammation and cancer.Crossref | GoogleScholarGoogle Scholar | 16153858PubMed |

von Dadelszen, P., and Magee, L. A. (2002). Could an infectious trigger explain the differential maternal response to the shared placental pathology of preeclampsia and normotensive intrauterine growth restriction? Acta Obstet. Gynecol. Scand. 81, 642–648.
Could an infectious trigger explain the differential maternal response to the shared placental pathology of preeclampsia and normotensive intrauterine growth restriction?Crossref | GoogleScholarGoogle Scholar | 12190839PubMed |

Zivkovic, I. P., Stojanovic, M. M., Petrusic, V. Z., Inic-Kanada, A. B., Micic, M. V., and Dimitrijevic, L. A. (2010). Network connectivity is shown to change in C57BL/6 mice during a continuing immune response subsequent to tetanus toxoid hyperimmunization. Biol. Res. 43, 393–402.
| 21526265PubMed |

Zivkovic, I., Stojanovic, M., Petrusic, V., Inic-Kanada, A., and Dimitrijevic, L. (2011). Induction of APS after TTd hyper-immunization has a different outcome in BALB/c and C57BL/6 mice. Am. J. Reprod. Immunol. 65, 492–502.
Induction of APS after TTd hyper-immunization has a different outcome in BALB/c and C57BL/6 mice.Crossref | GoogleScholarGoogle Scholar | 21029246PubMed |

Zivkovic, I., Petrusic, V., Stojanovic, M., Inic-Kanada, A., Stojicevic, I., and Dimitrijevic, L. (2012). Induction of decreased fecundity by tetanus toxoid hyper-immunization in C57BL/6 mice depends on the applied adjuvant. Innate Immun. 18, 333–342.
Induction of decreased fecundity by tetanus toxoid hyper-immunization in C57BL/6 mice depends on the applied adjuvant.Crossref | GoogleScholarGoogle Scholar | 21926163PubMed |