Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Impact of embryo donor adiposity, birthweight and gender on early postnatal growth, glucose metabolism and body composition in the young lamb

Jacqueline M. Wallace A B , John S. Milne A , Raymond P. Aitken A and Clare L. Adam A
+ Author Affiliations
- Author Affiliations

A Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK.

B Corresponding author. Email: jacqueline.wallace@abdn.ac.uk

Reproduction, Fertility and Development 26(5) 665-681 https://doi.org/10.1071/RD13090
Submitted: 16 January 2013  Accepted: 19 April 2013   Published: 29 May 2013

Abstract

Intrauterine growth restriction (IUGR) is a risk factor for metabolic syndrome, notably when associated with rapid postnatal catch-up growth. A sheep paradigm was used to assess relationships between prenatal and early postnatal growth trajectories, metabolism and body composition. Singletons (single-sire embryo transfer from obese and control donors) were gestated and suckled by overnourished adolescent dams and categorised by birthweight as IUGR or normal (N). Gestation length was equivalent in both categories and all lambs were delivered spontaneously preterm (PT; mean (± s.e.m.) 139.8 ± 1.7 days; term = 145–147 days). The IUGR lambs were smaller at birth, but fractional growth rates (FGR) for eight anthropometry parameters were higher and independent of gender (except thorax girth; males (M) < females (F)). At Day 48, fasting glucose (IUGR > N; M > F) and first-phase insulin response (to 20 min; IUGR < N; M < F) after glucose were influenced by prenatal growth and gender. Embryo donor adiposity influenced glucose tolerance only. Plasma insulin, insulin-like growth factor-1 (M > F) and leptin (M < F) were influenced by gender but not prenatal growth. At necropsy (Day 77), IUGR plus PT lambs had decreased carcass and visceral organ weights, but carcass composition was not different from N plus PT. In contrast, M were heavier, with lower internal fat mass, carcass fat percentage and perirenal fat leptin mRNA than F. Therefore, IUGR was associated with increased postnatal FGR and altered glucose handling, but, without absolute catch-up growth, gender had the predominant influence on postnatal leptinaemia and adiposity.

Additional keywords: glucose tolerance, insulin, insulin-like growth factor-1, leptin, metabolic syndrome.


References

Andrews, R. P., and Orskov, E. R. (1970). The nutrition of the early weaned lamb 2. The effect of dietary protein concentrations, feeding level and sex on body composition at two liveweights. J. Agric. Sci. 75, 19–26.
The nutrition of the early weaned lamb 2. The effect of dietary protein concentrations, feeding level and sex on body composition at two liveweights.Crossref | GoogleScholarGoogle Scholar |

Atkinson, T., Fowler, V. R., Garton, G. A., and Lough, A. K. (1972). A rapid method for the determination of lipid in animal tissue. Analyst 97, 562–568.
A rapid method for the determination of lipid in animal tissue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XlsV2gur0%3D&md5=b2356320a6929ec4dd33ce6ce90416e4CAS | 5045059PubMed |

Barker, D. J. (2006). Adult consequences of fetal growth restriction. Clin. Obstet. Gynecol. 49, 270–283.
Adult consequences of fetal growth restriction.Crossref | GoogleScholarGoogle Scholar | 16721106PubMed |

Bazaes, R. A., Salazar, T. E., Pittaluga, E., Peña, V., Alegría, A., Íñiguez, G., Ong, K. K., Dunger, D. B., and Mericq, M. V. (2003). Glucose and lipid metabolism in small for gestational age infants at 48 hours of age. Pediatrics 111, 804–809.
Glucose and lipid metabolism in small for gestational age infants at 48 hours of age.Crossref | GoogleScholarGoogle Scholar | 12671116PubMed |

Bernstein, I. M., Horbar, J. D., Badger, G. J., Ohlsson, A., and Golan, A. (2000). Morbidity and mortality among very-low-birth-weight neonates with intrauterine growth restriction. The Vermont Oxford Network. Am. J. Obstet. Gynecol. 182, 198–206.
Morbidity and mortality among very-low-birth-weight neonates with intrauterine growth restriction. The Vermont Oxford Network.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7hsV2lsQ%3D%3D&md5=7cb09734ed6d3cb2ed73004cf6583a34CAS | 10649179PubMed |

Bispham, J., Budge, H., Mostyn, A., Dandrea, J., Clarke, L., Keisler, D. H., Symonds, M. E., and Stephenson, T. (2002). Ambient temperature, maternal dexamethasone, and postnatal ontogeny of leptin in the neonatal lamb. Pediatr. Res. 52, 85–90.
Ambient temperature, maternal dexamethasone, and postnatal ontogeny of leptin in the neonatal lamb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFWntbc%3D&md5=0b5aa3c5ddf3045cfaa62a0c0fe3514fCAS | 12084852PubMed |

Bruce, L. A., Atkinson, T., Hutchinson, J. S. M., Shakespear, R. A., and MacRae, J. C. (1991). The measurement of insulin-like growth factor I in sheep plasma. J. Endocrinol. 128, R1–R4.
The measurement of insulin-like growth factor I in sheep plasma.Crossref | GoogleScholarGoogle Scholar | 2005407PubMed |

Cagnacci, A., Arangino, S., Caretto, S., Mazza, V., and Volpe, A. (2006). Sexual dimorphism in the levels of amniotic fluid leptin in pregnancies at 16 weeks gestation: relation to fetal growth. Eur. J. Obstet. Gynecol. Reprod. Biol. 124, 53–57.
Sexual dimorphism in the levels of amniotic fluid leptin in pregnancies at 16 weeks gestation: relation to fetal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVCi&md5=b362ff94aedca03253b6dc07db470fadCAS | 16051417PubMed |

Carr, D. J., Aitken, R. P., Milne, J. S., David, A. L., and Wallace, J. M. (2012). Fetoplacental biometry and umbilical artery Doppler velocimetry in the overnourished adolescent model of fetal growth restriction. Am. J. Obstet. Gynecol. 207, 141.e6–141.e15.
Fetoplacental biometry and umbilical artery Doppler velocimetry in the overnourished adolescent model of fetal growth restriction.Crossref | GoogleScholarGoogle Scholar |

Caton, J. S., Reed, J. J., Aitken, R. P., Milne, J. S., Borowicz, P. P., Reynolds, L. P., Redmer, D. A., and Wallace, J. M. (2009). Effects of maternal nutrition and stage of gestation on body weight, visceral organ mass, and indices of jejunal cellularity, proliferation, and vascularity in pregnant ewe lambs. J. Anim. Sci. 87, 222–235.
Effects of maternal nutrition and stage of gestation on body weight, visceral organ mass, and indices of jejunal cellularity, proliferation, and vascularity in pregnant ewe lambs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptFOltg%3D%3D&md5=c6ffa26fad59b5cf74dc887cc11791b8CAS | 18791144PubMed |

Colle, E., Schiff, D., Andrew, G., Bauer, C. B., and Fitzhardinge, P. (1976). Insulin responses during catch-up growth of infants who were small for gestational age. Pediatrics 57, 363–371.
| 1:STN:280:DyaE287ltFagsQ%3D%3D&md5=b0897a8f611b12aa5acf7b1c70c395cbCAS | 1256946PubMed |

Coupé, B., Amarger, V., Grit, I., Benani, A., and Parnet, P. (2010). Nutritional programming affects hypothalamic organization and early response to leptin. Endocrinology 151, 702–713.
Nutritional programming affects hypothalamic organization and early response to leptin.Crossref | GoogleScholarGoogle Scholar | 20016030PubMed |

Davidson, J., Mathieson, J., and Boyne, A. W. (1970). The use of automation in determining nitrogen by the Kjeldahl method, with final calculation by computer. Analyst 95, 181–193.
The use of automation in determining nitrogen by the Kjeldahl method, with final calculation by computer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXhtVOlu74%3D&md5=20a87099e7f9c2a28c49e10bd1d3b4b7CAS | 5414069PubMed |

De Blasio, M. J., Gatford, K. L., McMillen, C., Robinson, J. S., and Owens, J. A. (2007a). Placental restriction of fetal growth increases insulin action, growth, and adiposity in the young lamb. Endocrinology 148, 1350–1358.
Placental restriction of fetal growth increases insulin action, growth, and adiposity in the young lamb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitlWntr8%3D&md5=90826a81ad1764b80d21e0318d04e8b9CAS | 17110432PubMed |

De Blasio, M. J., Gatford, K. L., Robinson, J. S., and Owens, J. A. (2007b). Placental restriction of fetal growth reduces size at birth and alters postnatal growth, feeding activity, and adiposity in the young lamb. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R875–R886.
Placental restriction of fetal growth reduces size at birth and alters postnatal growth, feeding activity, and adiposity in the young lamb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjt1Gmsr8%3D&md5=100610c65d32742ffd1d0f7ced1efd5cCAS | 17023666PubMed |

De Blasio, M. J., Blache, D., Gatford, K. L., Robinson, J. J., and Owens, J. A. (2010). Placental restriction increases adipose leptin gene expression and plasma leptin and alters their relationship to feeding activity in the young lamb. Pediatr. Res. 67, 603–608.
Placental restriction increases adipose leptin gene expression and plasma leptin and alters their relationship to feeding activity in the young lamb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFKktr0%3D&md5=1a79065dd31d16e51b64e11e3aa850e8CAS | 20220548PubMed |

Duffield, J. A., Vuocolo, T., Tellam, R., McFarlane, J. R., Kauter, K. G., Muhlhausler, B. S., and McMillen, I. C. (2009). Intrauterine growth restriction and the sex specific programming of leptin and peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA expression in visceral fat in the lamb. Pediatr. Res. 66, 59–65.
Intrauterine growth restriction and the sex specific programming of leptin and peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA expression in visceral fat in the lamb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsV2kt7w%3D&md5=67815c12fc8280ceefe3f6cb15d24ab2CAS | 19342985PubMed |

Ehrhardt, R. A., Greenwood, P. L., Bell, A. W., and Boisclair, Y. R. (2003). Plasma leptin is regulated predominantly by nutrition in preruminant lambs. J. Nutr. 133, 4196–4201.
| 1:CAS:528:DC%2BD3sXpslGmurs%3D&md5=458b8d9c82ae43a1a164823241a3dfaaCAS | 14652371PubMed |

Ford, S. P., Zhang, L., Zhu, M., Miller, M. M., Smith, D. T., Hess, B. W., Moss, G. E., Nathanielsz, P. W., and Nijland, M. J. (2009). Maternal obesity accelerates fetal pancreatic β-cell but not α-cell development in sheep: prenatal consequences. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297, R835–R843.
Maternal obesity accelerates fetal pancreatic β-cell but not α-cell development in sheep: prenatal consequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGrtbbJ&md5=06329bb80e07998330265d0a652bf52aCAS | 19605766PubMed |

Fowden, A. L., Forhead, A. J., Coan, P. M., and Burton, G. J. (2008). The placenta intrauterine programming. J. Neuroendocrinol. 20, 439–450.
The placenta intrauterine programming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkslygurc%3D&md5=98bb40c7834b9834bdd7a999a63c9c67CAS | 18266944PubMed |

Garnett, S. P., Högler, W., Blades, B., Baur, L. A., Peat, J., Lee, J., and Cowell, C. T. (2004). Relation between hormones and body composition, including bone, in prepubertal children. Am. J. Clin. Nutr. 80, 966–972.
| 1:CAS:528:DC%2BD2cXotFeitr0%3D&md5=699dddbdb9a81013680a4323f99e68bcCAS | 15447907PubMed |

Gatford, K. L., Fletcher, T. P., Clarke, I. J., Owens, P. C., Quinn, K. J., Walton, P. E., Grant, P. A., Hosking, B. J., Egan, A. R., and Ponnampalam, E. N. (1996). Sexual dimorphism of circulating somatotropin, insulin-like growth factor I and II, insulin-like growth factor binding proteins, and insulin: relationships to growth rate and carcass characteristics in growing lambs. J. Anim. Sci. 74, 1314–1325.
| 1:CAS:528:DyaK28XjslSrt7g%3D&md5=c09a5c9c72bea90161682737af3ba3f6CAS | 8791204PubMed |

Gluckman, P. D., and Hanson, M. A. (2008). Developmental and epigenetic pathways to obesity: an evolutionary–developmental perspective. Int. J. Obes. (Lond). 32, S62–S71.
Developmental and epigenetic pathways to obesity: an evolutionary–developmental perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksl2rsQ%3D%3D&md5=6b1dd372c49afe792750f3fe78b87ff2CAS |

Greenwood, P. L., Hunt, A. S., Hermanson, J. W., and Bell, A. W. (1998). Effects of birth weight and postnatal nutrition on neonatal sheep: I. Body growth and composition, and some aspects of energetic efficiency. J. Anim. Sci. 76, 2354–2367.
| 1:CAS:528:DyaK1cXmsV2jt7k%3D&md5=3c72c4214e053ecfb820d2b316ba9511CAS | 9781492PubMed |

Greenwood, P. L., Hunt, A. S., Slepetis, R. M., Finnerty, K. D., Alston, C., Beermann, D. H., and Bell, A. W. (2002). Effects of birth weight and postnatal nutrition on neonatal sheep: III. Regulation of energy metabolism. J. Anim. Sci. 80, 2850–2861.
| 1:CAS:528:DC%2BD38XoslKgt7o%3D&md5=8cba048df862f570e99cfda6f0434f82CAS | 12462252PubMed |

Greenwood, P. L., Thompson, A. N., and Ford, S. P. (2010). Postnatal consequences of the maternal environment and of growth during prenatal life for productivity of ruminants. In ‘Managing the Prenatal Environment to Enhance Livestock Productivity’. (Eds P. L.Greenwood, A. W. Bell, P. E.Vercoe and G. J.Viljoen.) pp. 3–36. (Springer Science + Business Media: Dordrecht.)

Hack, M., and Merkatz, I. R. (1995). Preterm delivery and low birth weight: a dire legacy. N. Engl. J. Med. 333, 1772–1774.
Preterm delivery and low birth weight: a dire legacy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28%2Fpt1eisA%3D%3D&md5=a5fc0d164ae964ab1b21b423059abea8CAS | 7491144PubMed |

Halliday, H. L. (2009). Neonatal management and long-term sequelae. Best Pract. Res. Clin. Obstet. Gynaecol. 23, 871–880.
Neonatal management and long-term sequelae.Crossref | GoogleScholarGoogle Scholar | 19632899PubMed |

Husted, S. M., Nielsen, M. O., Tygesen, M. P., Kianni, A., Blache, D., and Ingvartsen, K. L. (2007). Programming of intermediate metabolism in young lambs affected by late gestational maternal undernourishment. Am. J. Physiol. Endocrinol. Metab. 293, E548–E557.
Programming of intermediate metabolism in young lambs affected by late gestational maternal undernourishment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt12qsr4%3D&md5=9000487db734b6d9eac66bdfac38d81dCAS | 17505050PubMed |

Joss-Moore, L. A., Wang, Y., Campbell, M. S., Moore, B., Yu, X., Callaway, C. W., McKnight, R. A., Desai, M., Moyer-Mileur, L. J., and Lane, R. H. (2010). Uteroplacental insufficiency increases visceral adiposity and visceral adipose PPARγ2 expression in male rat offspring prior to the onset of obesity. Early Hum. Dev. 86, 179–185.
Uteroplacental insufficiency increases visceral adiposity and visceral adipose PPARγ2 expression in male rat offspring prior to the onset of obesity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVaisbk%3D&md5=9bccc169659f682d0da1b076a0bba7adCAS | 20227202PubMed |

Kaijser, M., Bonamy, A. K., Akre, O., Cnattingius, S., Granath, F., Norman, M., and Ekbom, A. (2009). Perinatal risk factors for diabetes in later life. Diabetes 58, 523–526.
Perinatal risk factors for diabetes in later life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1WksLc%3D&md5=dbaef0fdbb50133a2238ca000975c24fCAS | 19066311PubMed |

Kayemba-Kay’s, S., Geary, M. P., Pringle, J., Rodeck, C. H., Kingdom, J. C., and Hindmarsh, P. C. (2008). Gender, smoking during pregnancy and gestational age influence cord leptin concentrations in newborn infants. Eur. J. Endocrinol. 159, 217–224.
Gender, smoking during pregnancy and gestational age influence cord leptin concentrations in newborn infants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ChsrbL&md5=4c169c0aa0e969e05a07d1caefe6504cCAS | 18524794PubMed |

Kumbak, B., Oral, E., and Bukulmez, O. (2012). Female obesity and assisted reproductive technologies. Semin. Reprod. Med. 30, 507–516.
Female obesity and assisted reproductive technologies.Crossref | GoogleScholarGoogle Scholar | 23074009PubMed |

Long, N. M., George, L. A., Uthlaut, A. B., Smith, D. T., Nijland, M. J., Nathanielsz, P. W., and Ford, S. P. (2010). Maternal obesity and increased nutrient intake before and during gestation in the ewe results in altered growth, adiposity, and glucose tolerance in adult offspring. J. Anim. Sci. 88, 3546–3553.
Maternal obesity and increased nutrient intake before and during gestation in the ewe results in altered growth, adiposity, and glucose tolerance in adult offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGlsL7J&md5=62d2c4225b9444cb0a6533f322a43898CAS | 20622177PubMed |

Long, N. M., Ford, S. P., and Nathanielsz, P. W. (2011). Maternal obesity eliminates the neonatal lamb plasma leptin peak. J. Physiol. 589, 1455–1462.
Maternal obesity eliminates the neonatal lamb plasma leptin peak.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFOrsLg%3D&md5=ba323c6f4244b3fa04625a879c229567CAS | 21262878PubMed |

MacRae, J. C., Bruce, L. A., Hovell, F. D. B., Hart, I. C., Inkster, J., and Atkinson, T. (1991). Influence of protein nutrition on the response of growing lambs to exogenous bovine growth hormone. J. Endocrinol. 130, 53–61.
Influence of protein nutrition on the response of growing lambs to exogenous bovine growth hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkslShtb0%3D&md5=3878b445a13fb38c8f179f501cb584c3CAS | 1880478PubMed |

Marie, M., Findlay, P. A., Thomas, L., and Adam, C. L. (2001). Daily patterns of plasma leptin in sheep: effects of photoperiod and food intake. J. Endocrinol. 170, 277–286.
Daily patterns of plasma leptin in sheep: effects of photoperiod and food intake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltlaksLw%3D&md5=879219c99085d33b855633ee2b8a695dCAS | 11431161PubMed |

Matsuzaki, M., Milne, J. S., Aitken, R. P., and Wallace, J. M. (2006). Overnourishing pregnant adolescent ewes preserves perirenal fat deposition in their growth-restricted fetuses. Reprod. Fertil. Dev. 18, 357–364.
Overnourishing pregnant adolescent ewes preserves perirenal fat deposition in their growth-restricted fetuses.Crossref | GoogleScholarGoogle Scholar | 16554011PubMed |

McConnell, J. M., Aitken, R. P., Petrie, L., and Wallace, J. M. (2004). Maternal fatness alters mitochondrial activity and the mitochondrial genome during oocyte maturation. J. Soc. Gynecol. Investig. 11, 294A–295A.

McMillan, W. H., and McDonald, M. F. (1985). Survival of fertilised ova from ewe lambs and adult uteri in the uteri of ewe lambs. Anim. Reprod. Sci. 8, 235–240.
Survival of fertilised ova from ewe lambs and adult uteri in the uteri of ewe lambs.Crossref | GoogleScholarGoogle Scholar |

Mericq, V., Ong, K. K., Bazeas, R., Peña, V., Avila, A., Salazar, T., Soto, N., Iniguez, G., and Dunger, D. B. (2005). Longitudinal changes in insulin sensitivity and secretion from birth to age three years in small- and appropriate-for-gestational-age children. Diabetologia 48, 2609–2614.
Longitudinal changes in insulin sensitivity and secretion from birth to age three years in small- and appropriate-for-gestational-age children.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mnjsl2rsA%3D%3D&md5=998e9094b4ca5b66ff315d8a8d6389e2CAS | 16283238PubMed |

Morrison, J. L. (2008). Sheep models of intrauterine growth restriction: fetal adaptations and consequences. Clin. Exp. Pharmacol. Physiol. 35, 730–743.
Sheep models of intrauterine growth restriction: fetal adaptations and consequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVCmtb4%3D&md5=f11229bbb3d43d39a70298b927e47bf9CAS | 18498533PubMed |

Muhlhausler, B. S., Ritorto, V., Schultz, C., Chatterton, B. E., Duffield, J. A., and McMillen, I. C. (2008). Birth weight and gender determine expression of adipogenic, lipogenic and adipokine genes in perirenal adipose tissue in the young adult sheep. Domest. Anim. Endocrinol. 35, 46–57.
Birth weight and gender determine expression of adipogenic, lipogenic and adipokine genes in perirenal adipose tissue in the young adult sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVyksbg%3D&md5=9e680327d40beb855409f0798eb2e9ffCAS | 18308504PubMed |

Owens, J. A., Thavaneswaran, P., De Blasio, M. J., McMillan, I. C., Robinson, J. S., and Gatford, K. L. (2007). Sex-specific effects of placental restriction on components of the metabolic syndrome in young adult sheep. Am. J. Physiol. Endocrinol. Metab. 292, E1879–E1889.
Sex-specific effects of placental restriction on components of the metabolic syndrome in young adult sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvF2mur0%3D&md5=f2599be5020acc6c84444c2389fe1e9bCAS | 17327366PubMed |

Pardi, G., Marconi, A. M., and Cetin, I. (2002). Placental–fetal interrelationship in IUGR fetuses: a review. Placenta 23, S136–S141.
Placental–fetal interrelationship in IUGR fetuses: a review.Crossref | GoogleScholarGoogle Scholar | 11978072PubMed |

Pilgaard, K., Færch, K., Carstensen, B., Poulsen, P., Pisinger, C., Pedersen, O., Witte, D. R., Hansen, T., Jørgensen, T., and Vaag, A. (2010). Low birthweight and premature birth are both associated with type 2 diabetes in a random sample of middle-aged Danes. Diabetologia 53, 2526–2530.
Low birthweight and premature birth are both associated with type 2 diabetes in a random sample of middle-aged Danes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2isLbL&md5=9f1bedcc907708f1bdcd997b1ca5ab45CAS | 20859612PubMed |

Quirke, J. F., and Hanrahan, J. P. (1977). Comparison of the survival in the uteri of adult ewes of cleaved ova from adult ewes and ewe lambs. J. Reprod. Fertil. 51, 487–489.
Comparison of the survival in the uteri of adult ewes of cleaved ova from adult ewes and ewe lambs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1c%2FmvFSitg%3D%3D&md5=db9c75c72e2e009bfd3d5a4c64aac604CAS | 592304PubMed |

Quirke, L. D., Juengel, J. L., Tisdall, D. J., Lun, S., Heath, D. A., and McNatty, K. P. (2001). Ontogeny of steroidogenesis in the fetal sheep gonad. Biol. Reprod. 65, 216–228.
Ontogeny of steroidogenesis in the fetal sheep gonad.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslWhtbY%3D&md5=e4c04827e25c1b1f7cd99a9ac146cf93CAS | 11420243PubMed |

Redmer, D. A., Milne, J. S., Aitken, R. P., Johnson, M. L., Borowicz, P. P., Reynolds, L. P., Caton, J. S., and Wallace, J. M. (2012). Decreasing maternal nutrient intake during the final third of pregnancy in previously overnourished adolescent sheep: Effects on maternal nutrient partitioning and feto-placental development. Placenta 33, 114–121.
Decreasing maternal nutrient intake during the final third of pregnancy in previously overnourished adolescent sheep: Effects on maternal nutrient partitioning and feto-placental development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsFymuw%3D%3D&md5=45394229b79c4a8b77b99ff982c43774CAS | 22154692PubMed |

Russel, A. J. F., Doney, J. M., and Gunn, R. G. (1969). Subjective assessment of body fat in live sheep. J. Agric. Sci. 72, 451–454.
Subjective assessment of body fat in live sheep.Crossref | GoogleScholarGoogle Scholar |

Sato, R., Watanabe, H., Shirai, K., Ohki, S., Genma, R., Morita, H., Inoue, E., Takeuchi, M., Maekawa, M., and Nakamura, H. (2012). A cross-sectional study of glucose regulation in young adults with very low birth weight: impact of male gender on hyperglycemia. BMJ Open 2, e000327.
A cross-sectional study of glucose regulation in young adults with very low birth weight: impact of male gender on hyperglycemia.Crossref | GoogleScholarGoogle Scholar | 22307095PubMed |

Simmons, R. A., Templeton, L. J., and Gertz, S. J. (2001). Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes 50, 2279–2286.
Intrauterine growth retardation leads to the development of type 2 diabetes in the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntlGhurc%3D&md5=c5fef69b2ebb3bc52d7a6b7da205eec9CAS | 11574409PubMed |

Wallace, J. M., Da Silva, P., Aitken, R. P., and Cheyne, M. A. (1997). Maternal endocrine status in relation to pregnancy outcome in rapidly growing adolescent sheep. J. Endocrinol. 155, 359–368.
Maternal endocrine status in relation to pregnancy outcome in rapidly growing adolescent sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntFyktr8%3D&md5=7a1c8c2d1b82f2b7f272c92878aa3e3cCAS | 9415070PubMed |

Wallace, J. M., Bourke, D. A., Aitken, R. P., and Cruickshank, M. A. (1999). Switching maternal dietary intake at the end of the first trimester has profound effects on placental development and foetal growth in adolescent ewes carrying singleton fetuses. Biol. Reprod. 61, 101–110.
Switching maternal dietary intake at the end of the first trimester has profound effects on placental development and foetal growth in adolescent ewes carrying singleton fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFKgtbc%3D&md5=82ad95dca8384f8320648420ea24422eCAS | 10377037PubMed |

Wallace, J. M., Bourke, D. A., Aitken, R. P., Leitch, N., and Hay, W. W. (2002). Blood flows and nutrient uptakes in growth-restricted pregnancies induced by overnourishing adolescent sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1027–R1036.
| 1:CAS:528:DC%2BD38XivVenu7c%3D&md5=48a53c57ff5f9446b9a5e9725b8fa141CAS | 11893606PubMed |

Wallace, J. M., Aitken, R. P., Milne, J. S., and Hay, W. W. (2004). Nutritionally mediated placental growth restriction in the growing adolescent: consequences for the fetus. Biol. Reprod. 71, 1055–1062.
Nutritionally mediated placental growth restriction in the growing adolescent: consequences for the fetus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGqtrk%3D&md5=82c01e8af0b310425c5a3f490d249281CAS | 15201203PubMed |

Wallace, J. M., Luther, J. S., Milne, J. S., Aitken, R. P., Redmer, D. A., Reynolds, L. P., and Hay, W. W. (2006a). Nutritional modulation of adolescent pregnancy outcome: a review. Placenta 27, 61–68.
Nutritional modulation of adolescent pregnancy outcome: a review.Crossref | GoogleScholarGoogle Scholar |

Wallace, J. M., Milne, J. S., Redmer, D. A., and Aitken, R. P. (2006b). Effect of diet composition on pregnancy outcome in overnourished rapidly growing adolescent sheep. Br. J. Nutr. 96, 1060–1068.
Effect of diet composition on pregnancy outcome in overnourished rapidly growing adolescent sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFCqsbY%3D&md5=be3ba55aa314f5a185b762069fb32b06CAS | 17181881PubMed |

Wallace, J. M., Milne, J. S., Matsuzaki, M., and Aitken, R. P. (2008). Serial measurement of uterine blood flow from mid to late gestation in growth restricted pregnancies induced by overnourishing adolescent sheep dams. Placenta 29, 718–724.
Serial measurement of uterine blood flow from mid to late gestation in growth restricted pregnancies induced by overnourishing adolescent sheep dams.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1critFKgsQ%3D%3D&md5=8f7c54a2599a1ccbb877d7cb483480bcCAS | 18579200PubMed |

Wallace, J. M., Milne, J. S., and Aitken, R. P. (2010). Effect of weight and adiposity at conception and wide variations in gestational dietary intake on pregnancy outcome and early postnatal performance in young adolescent sheep. Biol. Reprod. 82, 320–330.
Effect of weight and adiposity at conception and wide variations in gestational dietary intake on pregnancy outcome and early postnatal performance in young adolescent sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSnsLk%3D&md5=0dc7617623eecf1d7e2f5abee82e1ff6CAS | 19794151PubMed |

Wallace, J. M., Aitken, R. P., Milne, J. S., Bake, T., and Adam, C. L. (2011). Growth, body composition and metabolism at neonatal and adolescent life stages in low birth weight offspring. Proc. Nut. Soc. 70, E7.
Growth, body composition and metabolism at neonatal and adolescent life stages in low birth weight offspring.Crossref | GoogleScholarGoogle Scholar |

Wallace, J. M., Milne, J. S., Adam, C. A., and Aitken, R. A. (2012). Adverse metabolic phenotype in low-birth-weight lambs and its modification by postnatal nutrition. Br. J. Nutr. 107, 510–522.
Adverse metabolic phenotype in low-birth-weight lambs and its modification by postnatal nutrition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslCjs7g%3D&md5=645dc843380fd49003183045cf703a4dCAS | 21733295PubMed |

Wells, J. C. K. (2007). Sexual dimorphism of body composition. Best Pract. Res. Clin. Endocrinol. Metab. 21, 415–430.
Sexual dimorphism of body composition.Crossref | GoogleScholarGoogle Scholar |

Whincup, P. H., Kaye, S. J., Owen, C. J., Huxley, R., Cook, D. G., Anazawa, S., Barrett-Connor, E., Bhargava, S. K., Birgisdottir, B. E., Carlsson, S., et al. (2008). Birth weight and risk of type 2 diabetes. A systematic review. JAMA 300, 2886–2897.
Birth weight and risk of type 2 diabetes. A systematic review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtlGiuw%3D%3D&md5=c769b698daecdebfc6f3f728ed13a57dCAS | 19109117PubMed |

Wu, G., Bazer, F. W., Wallace, J. M., and Spencer, T. E. (2006). Board-Invited Review: intrauterine growth retardation: implications for the animal sciences. J. Anim. Sci. 84, 2316–2337.
Board-Invited Review: intrauterine growth retardation: implications for the animal sciences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovFGktLs%3D&md5=7dbb00a63fa4f0001885b9bfccb32463CAS | 16908634PubMed |