Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effect of superstimulation protocols on nuclear maturation and distribution of lipid droplets in bovine oocytes

D. Dadarwal A , M. Honparkhe B , F. C. F. Dias A , T. Alce A , C. Lessard A C and J. Singh A D
+ Author Affiliations
- Author Affiliations

A Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.

B Department of Animal Reproduction, Gynaecology and Obstetrics, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India.

C Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan, SK S7N 0X2, Canada.

D Corresponding author. Email: jaswant.singh@usask.ca

Reproduction, Fertility and Development 27(8) 1137-1146 https://doi.org/10.1071/RD13265
Submitted: 20 August 2013  Accepted: 23 March 2014   Published: 19 June 2014

Abstract

Our objective was to study the effect of superstimulation protocols on nuclear maturation of the oocyte and the distribution of lipid droplets in the ooplasm. Heifers (n = 4 each group) during the luteal phase were either treated with FSH for 4 days (Short FSH), FSH for 4 days followed by 84 h of gonadotropin free period (FSH Starvation) or for 7 days (Long FSH) starting from the day of wave emergence. In all groups, LH was given 24 h after induced luteolysis (penultimate day of FSH) and cumulus–oocyte complexes were collected 24 h later. Oocytes were stained for nuclear maturation (Lamin/chromatin) and lipid droplets (Nile red). The Long FSH group had a greater proportion of mature oocytes (metaphase II) compared with heifers in the Short FSH and FSH Starvation groups (59/100 vs 5/23 and 2/25, respectively; P < 0.01). On average across all groups, oocytes contained 22 pL of lipids (3.3% of ooplasm volume) distributed as 3000 droplets. Average volume of individual lipid droplets was higher in the FSH Starvation (11.5 ± 1.5 10–3 pL, P = 0.03) compared with the Short and Long FSH groups (7.2 ± 0.6 10–3 and 8.0 ± 0.8 10–3 pL, respectively). In conclusion, both FSH Starvation and Short FSH treatments yielded a lower proportion of mature oocytes compared with the Long FSH treatment. Furthermore, FSH starvation led to an accumulation of larger lipid droplets in the ooplasm, indicating atresia. Our results indicate that a longer superstimulation period in beef cattle yields higher numbers and better-quality oocytes.

Additional keywords: follicle aging, FSH starvation, FSH treatment, lipid droplets, metaphase II, oocyte maturation, superstimulation.


References

Assey, R. J., Hyttel, P., Greve, T., and Purwantara, B. (1994). Oocyte morphology in dominant and subordinate follicles. Mol. Reprod. Dev. 37, 335–344.
Oocyte morphology in dominant and subordinate follicles.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3kt1Chsg%3D%3D&md5=3148c7d1479be085f93b2d680bd52bbdCAS | 8185939PubMed |

Awasthi, H., Saravia, F., Rodriguez-Martinez, H., and Bage, R. (2010). Do cytoplasmic lipid droplets accumulate in immature oocytes from over-conditioned repeat-breeder dairy heifers? Reprod. Domest. Anim. 45, e194–e198.
| 1:STN:280:DC%2BC3MzosFCgtQ%3D%3D&md5=d905b21e18ea2a33c5eeb5578dce6f3aCAS | 19735437PubMed |

Ayalon, D., Tsafriri, A., Lindner, H. R., Cordova, T., and Harell, A. (1972). Serum gonadotrophin levels in pro-oestrous rats in relation to the resumption of meiosis by the oocytes. J. Reprod. Fertil. 31, 51–58.
Serum gonadotrophin levels in pro-oestrous rats in relation to the resumption of meiosis by the oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xls1amsr8%3D&md5=ed1c770b2713df146a2d8dc37b30dd04CAS | 4672940PubMed |

Berfelt, D. R., Lightfoot, K. C., and Adams, G. P. (1994). Ovarian synchronisation following ultrasound-guided transvaginal follicle ablation in heifers. Theriogenology 42, 895–907.
Ovarian synchronisation following ultrasound-guided transvaginal follicle ablation in heifers.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVemsA%3D%3D&md5=b09c3710167a785dd901b08c46fc9adbCAS | 16727595PubMed |

Blondin, P., Guilbault, L., and Sirard, M. (1997). The time interval between FSH-P administration and slaughter can influence the developmental competence of beef-heifer oocytes. Theriogenology 48, 803–813.
The time interval between FSH-P administration and slaughter can influence the developmental competence of beef-heifer oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXms1Shsrw%3D&md5=197fa7d6299cc328b1ef1bca72e60f54CAS | 16728173PubMed |

Brogliatti, G. M., and Adams, G. P. (1996). Ultrasound-guided transvaginal oocyte collection in prepubertal calves. Theriogenology 45, 1163–1176.
Ultrasound-guided transvaginal oocyte collection in prepubertal calves.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVKgsg%3D%3D&md5=8e86b5775974ccd2dbf9854b688da9ecCAS | 16727873PubMed |

Dias, F. C., Costa, E., Adams, G. P., Mapletoft, R. J., Kastelic, J., Dochi, O., and Singh, J. (2013a). Effect of duration of the growing phase of ovulatory follicles on oocyte competence in superstimulated cattle. Reprod. Fertil. Dev. 25, 523–530.
Effect of duration of the growing phase of ovulatory follicles on oocyte competence in superstimulated cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3svjvFKntw%3D%3D&md5=158a119346dbd32d318b9ed4b2126f9aCAS | 23464499PubMed |

Dias, F. C., Dadarwal, D., Adams, G. P., Mrigank, H., Mapletoft, R. J., and Singh, J. (2013b). Length of the follicular growing phase and oocyte competence in beef heifers. Theriogenology 79, 1177–1183e1.
Length of the follicular growing phase and oocyte competence in beef heifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXksFOls70%3D&md5=cbda19e093b87e15ba62f8763e316be2CAS | 23534995PubMed |

Downs, S. M., Mosey, J. L., and Klinger, J. (2009). Fatty-acid oxidation and meiotic resumption in mouse oocytes. Mol. Reprod. Dev. 76, 844–853.
Fatty-acid oxidation and meiotic resumption in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptleht7c%3D&md5=e67e48a468b1bcafb036c471952f200dCAS | 19455666PubMed |

Dunning, K. R., Cashman, K., Russell, D. L., Thompson, J. G., Norman, R. J., and Robker, R. L. (2010). Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol. Reprod. 83, 909–918.
Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFahurfN&md5=225f0aed8c09d2c36b252350a6f234bdCAS | 20686180PubMed |

Edwards, R. G. (1965). Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes. Nature 208, 349–351.
Maturation in vitro of mouse, sheep, cow, pig, rhesus monkey and human ovarian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF287lsVagsg%3D%3D&md5=c5204ba8baa74de5f5e682beac2e079dCAS | 4957259PubMed |

Ferguson, E. M., and Leese, H. J. (1999). Triglyceride content of bovine oocytes and early embryos. J. Reprod. Fertil. 116, 373–378.
Triglyceride content of bovine oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkslOltbc%3D&md5=34536db816e8448b5e8ece9bbf49a96bCAS | 10615263PubMed |

García Guerra, A., Tribulo, A., Yapura, J., Singh, J., and Mapletoft, R. (2012). Lengthening the superstimulatory treatment protocol increases ovarian response and number of transferable embryos in beef cows. Theriogenology 78, 353–360.
Lengthening the superstimulatory treatment protocol increases ovarian response and number of transferable embryos in beef cows.Crossref | GoogleScholarGoogle Scholar | 22494674PubMed |

Genicot, G., Leroy, J. L., Soom, A. V., and Donnay, I. (2005). The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology 63, 1181–1194.
The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSltb8%3D&md5=2263e10a79e8a08bc4a640505b41ef2dCAS | 15710202PubMed |

Hyttel, P., Callesen, H., and Greve, T. (1986). Ultrastructural features of preovulatory oocyte maturation in superovulated cattle. J. Reprod. Fertil. 76, 645–656.
Ultrastructural features of preovulatory oocyte maturation in superovulated cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL287pvFyrtQ%3D%3D&md5=f498e05ee3506d5187fafeb02bc16e55CAS | 3084771PubMed |

Hyttel, P., Greve, T., and Callesen, H. (1989a). Ultrastructural aspects of oocyte maturation and fertilisation in cattle. J. Reprod. Fertil. Suppl. 38, 35–47.
| 1:STN:280:DyaK3c%2Fht1ShtA%3D%3D&md5=199f40a7fa95df8991bd74eeaad6153eCAS | 2677348PubMed |

Hyttel, P., Greve, T., and Callesen, H. (1989b). Ultrastructure of oocyte maturation and fertilisation in superovulated cattle. Prog. Clin. Biol. Res. 296, 287–297.
| 1:STN:280:DyaL1M3pslShsw%3D%3D&md5=58d4a2b59f9a66f903d5cd20c0731086CAS | 2740381PubMed |

Jaiswal, R. S. (2007) Regulation of follicular-wave patterns in cattle. PhD Thesis, University of Saskatchewan, Saskatoon.

Kim, J. Y., Kinoshita, M., Ohnishi, M., and Fukui, Y. (2001). Lipid and fatty-acid analysis of fresh and frozen–thawed immature and in vitro-matured bovine oocytes. Reproduction 122, 131–138.
Lipid and fatty-acid analysis of fresh and frozen–thawed immature and in vitro-matured bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVGis70%3D&md5=5bdbce473372dfc9bd98bcd113210b69CAS | 11425337PubMed |

Kinder, J. E., Kojima, F. N., Bergfeld, E. G. M., Wehrman, M. E., and Fike, K. E. (1996). Progestin and oestrogen regulation of pulsatile LH release and development of persistent ovarian follicles in cattle. J. Anim. Sci. 74, 1424–1440.
| 1:CAS:528:DyaK28XjslSrtb4%3D&md5=b5cd0c7cec86288f89e6d7a1ecfffc18CAS | 8791218PubMed |

Kruip, T. A. M., Cran, D. G., van Beneden, T. H., and Dieleman, S. J. (1983). Structural changes in bovine oocytes during final maturation in vivo. Gamete Res. 8, 29–47.
Structural changes in bovine oocytes during final maturation in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlvVyisLc%3D&md5=05dc9456cce4c4433ad5010691c38cd1CAS |

Murphy, D. J. (2001). The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog. Lipid Res. 40, 325–438.
The biogenesis and functions of lipid bodies in animals, plants and microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtlGgsLw%3D&md5=fc7dc04ababbb11f5bcf4c196c63f56cCAS | 11470496PubMed |

Nasser, L. F., Adams, G. P., Bo, G. A., and Mapletoft, R. J. (1993). Ovarian superstimulatory response relative to follicular-wave emergence in heifers. Theriogenology 40, 713–724.
Ovarian superstimulatory response relative to follicular-wave emergence in heifers.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVWitg%3D%3D&md5=dd708daf84ca5788665a04cf83ac87e9CAS | 16727353PubMed |

Nivet, A. L., Bunel, A., Labrecque, R., Belanger, J., Vigneault, C., Blondin, P., and Sirard, M. A. (2012). FSH withdrawal improves developmental competence of oocytes in the bovine model. Reproduction 143, 165–171.
FSH withdrawal improves developmental competence of oocytes in the bovine model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjs1Kkt70%3D&md5=22433109714f21df8d865e4d8b291f9fCAS | 22080141PubMed |

Paczkowski, M., Silva, E., Schoolcraft, W. B., and Krisher, R. L. (2013). Comparative importance of fatty-acid beta-oxidation to nuclear maturation, gene expression and glucose metabolism in mouse, bovine and porcine cumulus–oocyte complexes. Biol. Reprod. 88, 111.
Comparative importance of fatty-acid beta-oxidation to nuclear maturation, gene expression and glucose metabolism in mouse, bovine and porcine cumulus–oocyte complexes.Crossref | GoogleScholarGoogle Scholar | 23536372PubMed |

Prentice-Biensch, J. R., Singh, J., Mapletoft, R. J., and Anzar, M. (2012). Vitrification of immature bovine cumulus–oocyte complexes: effects of cryoprotectants, the vitrification procedure and warming time on cleavage and embryo development. Reprod. Biol. Endocrinol. 10, 73.
Vitrification of immature bovine cumulus–oocyte complexes: effects of cryoprotectants, the vitrification procedure and warming time on cleavage and embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVequ7%2FI&md5=3c10e29b0c2476808eddb353f4a390e1CAS | 22954348PubMed |

Savio, J. D., Thatcher, W. W., Morris, G. R., Entwistle, K., Drost, M., and Mattiacci, M. R. (1993). Effects of induction of low plasma progesterone concentrations with a progesterone-releasing intravaginal device on follicular turnover and fertility in cattle. J. Reprod. Fertil. 98, 77–84.
Effects of induction of low plasma progesterone concentrations with a progesterone-releasing intravaginal device on follicular turnover and fertility in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltlWrsr0%3D&md5=41cfb817979939f94d6e42c633ea8ddeCAS | 8345482PubMed |

Stock, A. E., and Fortune, J. E. (1993). Ovarian follicular dominance in cattle: relationship between prolonged growth of the ovulatory follicle and endocrine parameters. Endocrinology 132, 1108–1114.
| 1:CAS:528:DyaK3sXhs1Wgsbs%3D&md5=a16a8b66686e464b1f0e329f034e3f66CAS | 8440173PubMed |

Sturmey, R. G., O’Toole, P. J., and Leese, H. J. (2006). Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte. Reproduction 132, 829–837.
Fluorescence resonance energy transfer analysis of mitochondrial:lipid association in the porcine oocyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsF2isw%3D%3D&md5=13421a7ad3b6ccf5e4b12336ffa2daf2CAS | 17127743PubMed |

Takagi, M., Kim, I. H., Izadyar, F., Hyttel, P., Bevers, M. M., Dieleman, S. J., Hendriksen, P. J., and Vos, P. L. (2001). Impaired final follicular maturation in heifers after superovulation with recombinant human FSH. Reproduction 121, 941–951.
Impaired final follicular maturation in heifers after superovulation with recombinant human FSH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkslWntrc%3D&md5=b30480359b3f2e855f5e3e5dd895a2e7CAS | 11373181PubMed |