Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Aberrant expression of TAR DNA binding protein-43 is associated with spermatogenic disorders in men

Divya Saro Varghese A , Uma Chandran A , Ambili Soumya A , Sathy M. Pillai B , Krishnapillai Jayakrishnan C , Prabhakara P. Reddi D and Pradeep G. Kumar A E
+ Author Affiliations
- Author Affiliations

A Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram 695014, Kerala, India.

B Samad IVF Hospital, Pattoor, Vanchiyoor Road, Thiruvananthapuram 695035, Kerala, India.

C KJK Hospital, Nalanchira, Trivandrum 695015, Kerala, India.

D Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.

E Corresponding author. Email: kumarp@rgcb.res.in

Reproduction, Fertility and Development 28(6) 713-722 https://doi.org/10.1071/RD14090
Submitted: 14 March 2014  Accepted: 12 August 2014   Published: 31 October 2014

Abstract

Loss of function of TAR DNA-binding protein (TDP-43) has been implicated in neurodegenerative disorders in both humans and animal models. TDP-43 has also been shown to be cis-acting transcriptional repressor of the acrosome vesicle (Acrv) gene in mice. In the present study, we investigated the expression of the TDP-43 transcript (TARDBP) and protein in germ cells from 11 fertile and 98 subfertile men to verify its potential association with poor seminograms. The expression profile of TDP-43 was characterised in immature germ cells and spermatozoa from semen from fertile and subfertile men using reverse transcription–polymerase chain reaction, western blotting and immunofluorescence. Although germ cells from subfertile men tested negative for TARDBP, the full-length message of the same was detected in fertile men. TDP-43 was detected in spermatozoa from fertile men using western blot analysis and immunofluorescence. The expression of this protein was negligible in spermatozoa from men with primary spermatogenic dysfunction. We conclude that a deficiency in the TDP-43 expression is associated with defective spermatogenesis and male infertility. We propose that TDP-43 could be used as a marker of male factor infertility.

Additional keywords: infertility, semen analysis, spermatogenesis, TDP-43, testis


References

Abhyankar, M. M., Urekar, C., and Reddi, P. P. (2007). A novel CpG-free vertebrate insulator silences the testis-specific SP-10 gene in somatic tissues: role for TDP-43 in insulator function. J. Biol. Chem. 282, 36 143–36 154.
A novel CpG-free vertebrate insulator silences the testis-specific SP-10 gene in somatic tissues: role for TDP-43 in insulator function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSgsbnP&md5=ed79852b8c7f61508d0311114c53ab55CAS |

Abu-Halima, M., Hammadeh, M., Schmitt, J., Leidinger, P., Keller, A., Meese, E., and Backes, C. (2013). Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertil. Steril. 99, 1249–1255.
Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnslygtw%3D%3D&md5=86b0461c6c1d54263666259c5f895bd8CAS | 23312218PubMed |

Abu-Halima, M., Backes, C., Leidinger, P., Keller, A., Lubbad, A. M., Hammadeh, M., and Meese, E. (2014). MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns. Fertil. Steril. 101, 78–86.
MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1OqtLvI&md5=6cc76b8a4b79c065b975e63332677c3eCAS | 24140040PubMed |

Acharya, K. K., Govind, C. K., Shore, A. N., Stoler, M. H., and Reddi, P. P. (2006). Cis-requirement for the maintenance of round spermatid-specific transcription. Dev. Biol. 295, 781–790.
Cis-requirement for the maintenance of round spermatid-specific transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1yntLc%3D&md5=e6026ae224efddeb079c0073af373b47CAS | 16730344PubMed |

Ayala, Y. M., Pantano, S., D’Ambrogio, A., Buratti, E., Brindisi, A., Marchetti, C., Romano, M., and Baralle, F. E. (2005). Human, Drosophila, and C. elegans TDP43: nucleic acid binding properties and splicing regulatory function. J. Mol. Biol. 348, 575–588.
Human, Drosophila, and C. elegans TDP43: nucleic acid binding properties and splicing regulatory function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1Wjsbs%3D&md5=289549257c9c50a4ea2d019c62784b56CAS | 15826655PubMed |

Ayala, Y. M., Misteli, T., and Baralle, F. E. (2008a). TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression. Proc. Natl Acad. Sci. USA 105, 3785–3789.
TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs1Oitbc%3D&md5=d742c18d68ccacc45718b1e821c2068eCAS | 18305152PubMed |

Ayala, Y. M., Zago, P., D’Ambrogio, A., Xu, Y. F., Petrucelli, L., Buratti, E., and Baralle, F. E. (2008b). Structural determinants of the cellular localization and shuttling of TDP-43. J. Cell Sci. 121, 3778–3785.
Structural determinants of the cellular localization and shuttling of TDP-43.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFaktLjM&md5=2cceb925436c8f9d0980fd2327d330b2CAS | 18957508PubMed |

Ayala, Y. M., De, C. L., Avendano-Vazquez, S. E., Dhir, A., Romano, M., D’Ambrogio, A., Tollervey, J., Ule, J., Baralle, M., Buratti, E., and Baralle, F. E. (2011). TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO J. 30, 277–288.
TDP-43 regulates its mRNA levels through a negative feedback loop.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFSku7jI&md5=82e21ca7a1ea8acddfd087b7481ad4fbCAS | 21131904PubMed |

Banks, G. T., Kuta, A., Isaacs, A. M., and Fisher, E. M. (2008). TDP-43 is a culprit in human neurodegeneration, and not just an innocent bystander. Mamm. Genome 19, 299–305.
TDP-43 is a culprit in human neurodegeneration, and not just an innocent bystander.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVCitr8%3D&md5=0fc05dea891fdd2a9a257ea74e847167CAS | 18592312PubMed |

Barmada, S. J., Skibinski, G., Korb, E., Rao, E. J., Wu, J. Y., and Finkbeiner, S. (2010). Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J. Neurosci. 30, 639–649.
Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFahtLw%3D&md5=65b8779aa3ad3ddf7f73a88fc4f443d1CAS | 20071528PubMed |

Bashamboo, A., Ferraz-de-Souza, B., Lourenco, D., Lin, L., Sebire, N. J., Montjean, D., Bignon-Topalovic, J., Mandelbaum, J., Siffroi, J. P., Christin-Maitre, S., Radhakrishna, U., Rouba, H., Ravel, C., Seeler, J., Achermann, J. C., and McElreavey, K. (2010). Human male infertility associated with mutations in NR5A1 encoding steroidogenic factor 1. Am. J. Hum. Genet. 87, 505–512.
Human male infertility associated with mutations in NR5A1 encoding steroidogenic factor 1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1CgtrnE&md5=d9b86e21b16c4fea291c0318e56f44e2CAS | 20887963PubMed |

Bose, J. K., Wang, I. F., Hung, L., Tarn, W. Y., and Shen, C. K. (2008). TDP-43 overexpression enhances exon 7 inclusion during the survival of motor neuron pre-mRNA splicing. J. Biol. Chem. 283, 28 852–28 859.
TDP-43 overexpression enhances exon 7 inclusion during the survival of motor neuron pre-mRNA splicing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GlsLfJ&md5=903587df02db19aae26d29f90aa5c273CAS |

Buratti, E., and Baralle, F. E. (2001). Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J. Biol. Chem. 276, 36 337–36 343.
Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1yrsbw%3D&md5=b56a14c11c72dde8510cd15952355181CAS |

Buratti, E., and Baralle, F. E. (2008). Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front. Biosci. 13, 867–878.
Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Chtbw%3D&md5=1a93d10b97514613d100d2d727958eb9CAS | 17981595PubMed |

Buratti, E., and Baralle, F. E. (2010). The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation. RNA Biol. 7, 420–429.
The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOmsrvI&md5=5ceb2001b31a543b2a8e753360b9f7b8CAS | 20639693PubMed |

Buratti, E., and Baralle, F. E. (2011). TDP-43: new aspects of autoregulation mechanisms in RNA binding proteins and their connection with human disease. FEBS J. 278, 3530–3538.
TDP-43: new aspects of autoregulation mechanisms in RNA binding proteins and their connection with human disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Ons7jF&md5=c414870692a55f29ef0abcb823a3da38CAS | 21777388PubMed |

Buratti, E., Dork, T., Zuccato, E., Pagani, F., Romano, M., and Baralle, F. E. (2001). Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J. 20, 1774–1784.
Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivVCrs7o%3D&md5=2d3ec091976b0f701555466968998863CAS | 11285240PubMed |

Chan, C. C., Shui, H. A., Wu, C. H., Wang, C. Y., Sun, G. H., Chen, H. M., and Wu, G. J. (2009). Motility and protein phosphorylation in healthy and asthenozoospermic sperm. J. Proteome Res. 8, 5382–5386.
Motility and protein phosphorylation in healthy and asthenozoospermic sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGiu73N&md5=efff189b96c05c9c9c7fbc3646fcd326CAS | 19678645PubMed |

Dieterich, K., Soto, R. R., Faure, A. K., Hennebicq, S., Ben, A. B., Zahi, M., Perrin, J., Martinez, D., Sele, B., Jouk, P. S., Ohlmann, T., Rousseaux, S., Lunardi, J., and Ray, P. F. (2007). Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nat. Genet. 39, 661–665.
Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFersb0%3D&md5=1f15d8ec6d1549207d02ec7f0b637d22CAS | 17435757PubMed |

Elliott, D. J. (2004). The role of potential splicing factors including RBMY, RBMX, hnRNPG-T and STAR proteins in spermatogenesis. Int. J. Androl. 27, 328–334.
The role of potential splicing factors including RBMY, RBMX, hnRNPG-T and STAR proteins in spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptVaiug%3D%3D&md5=c54e2be3737ad03f429eea1398dc6ea8CAS | 15595951PubMed |

Elliott, D. J., Millar, M. R., Oghene, K., Ross, A., Kiesewetter, F., Pryor, J., McIntyre, M., Hargreave, T. B., Saunders, P. T., Vogt, P. H., Chandley, A. C., and Cooke, H. (1997). Expression of RBM in the nuclei of human germ cells is dependent on a critical region of the Y chromosome long arm. Proc. Natl Acad. Sci. USA 94, 3848–3853.
Expression of RBM in the nuclei of human germ cells is dependent on a critical region of the Y chromosome long arm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXis1ejsb0%3D&md5=09dc3c5262a174d2977654ff7beaaf12CAS | 9108067PubMed |

Erkan, E., Toktas, G., Unluer, E., Ozyalvacli, M. E., Ozyalvacli, G., and Huq, G. E. (2012). Expression of NOS isoforms in internal spermatic veins of infertile men with varicocele. Syst. Biol. Reprod. Med. 58, 268–273.
Expression of NOS isoforms in internal spermatic veins of infertile men with varicocele.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGrtL3J&md5=be1969538f2b5b1d260c79adde87dde4CAS | 22646165PubMed |

Esmaeili, M. A., Panahi, M., Yadav, S., Hennings, L., and Kiaei, M. (2013). Premature death of TDP-43 (A315T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral sclerosis. Int. J. Exp. Pathol. 94, 56–64.
Premature death of TDP-43 (A315T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral sclerosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVOrsbs%3D&md5=b9fb5162e60ca4d4857f786823d32aa5CAS | 23317354PubMed |

Gandini, L., Lenzi, A., Lombardo, F., Pacifici, R., and Dondero, F. (1999). Immature germ cell separation using a modified discontinuous Percoll gradient technique in human semen. Hum. Reprod. 14, 1022–1027.
Immature germ cell separation using a modified discontinuous Percoll gradient technique in human semen.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M3jslGqsQ%3D%3D&md5=56ad8e6ce263d2a0f3bdc99f757bfbe6CAS | 10221236PubMed |

Gendron, T. F., and Petrucelli, L. (2011). Rodent models of TDP-43 proteinopathy: investigating the mechanisms of TDP-43-mediated neurodegeneration. J. Mol. Neurosci. 45, 486–499.
Rodent models of TDP-43 proteinopathy: investigating the mechanisms of TDP-43-mediated neurodegeneration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVWit7nN&md5=e24a807cec8f3d832aadcf438f334555CAS | 21811811PubMed |

Gu, A. H., Liang, J., Lu, N. X., Wu, B., Xia, Y. K., Lu, C. C., Song, L., Wang, S. L., and Wang, X. R. (2007). Association of XRCC1 gene polymorphisms with idiopathic azoospermia in a Chinese population. Asian J. Androl. 9, 781–786.
Association of XRCC1 gene polymorphisms with idiopathic azoospermia in a Chinese population.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVWrtLbM&md5=dabbf9e865ce9655e541a08f67213593CAS | 17968463PubMed |

Heidari, M. M., Khatami, M., and Talebi, A. R. (2012). The POLG gene polymorphism in Iranian varicocele-associated infertility patients. Iran. J. Basic Med. Sci. 15, 739–744.
| 1:CAS:528:DC%2BC38XosVWhsLs%3D&md5=418e1872e4a853004eecb0ceed08a528CAS | 23493802PubMed |

Igaz, L. M., Kwong, L. K., Lee, E. B., Chen-Plotkin, A., Swanson, E., Unger, T., Malunda, J., Xu, Y., Winton, M. J., Trojanowski, J. Q., and Lee, V. M. (2011). Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J. Clin. Invest. 121, 726–738.
Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsl2qsrs%3D&md5=62ca18ef11c0d0663ef96ca40e1d51a2CAS | 21206091PubMed |

Ji, G., Gu, A., Zhu, P., Xia, Y., Zhou, Y., Hu, F., Song, L., Wang, S., and Wang, X. (2010). Joint effects of XRCC1 polymorphisms and polycyclic aromatic hydrocarbons exposure on sperm DNA damage and male infertility. Toxicol. Sci. 116, 92–98.
Joint effects of XRCC1 polymorphisms and polycyclic aromatic hydrocarbons exposure on sperm DNA damage and male infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVOlt78%3D&md5=2c74c460c3d902e17901a0b05dd19e51CAS | 20395310PubMed |

Kabashi, E., Lin, L., Tradewell, M. L., Dion, P. A., Bercier, V., Bourgouin, P., Rochefort, D., Bel, H. S., Durham, H. D., Vande, V. C., Rouleau, G. A., and Drapeau, P. (2010). Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum. Mol. Genet. 19, 671–683.
Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVShug%3D%3D&md5=0492e845d971c73c77ef52e3dab6d8cdCAS | 19959528PubMed |

Kaneko, S., Oshio, S., Kobanawa, K., Kobayashi, T., Mohri, H., and Iizuka, R. (1986). Purification of human sperm by a discontinuous Percoll density gradient with an innercolumn. Biol. Reprod. 35, 1059–1063.
Purification of human sperm by a discontinuous Percoll density gradient with an innercolumn.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s7ivFWltw%3D%3D&md5=20db7284ff9f8f0af7081a86a1526bf2CAS | 3028515PubMed |

Kawahara, Y., and Mieda-Sato, A. (2012). TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc. Natl Acad. Sci. USA 109, 3347–3352.
TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVyht74%3D&md5=83d59a32891b47e1fb7ceac02c492b79CAS | 22323604PubMed |

Kotaja, N. (2014). MicroRNAs and spermatogenesis. Fertil. Steril. 101, 1552–1562.
MicroRNAs and spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvFGiurs%3D&md5=fb4e39a6a385674d2231860fc2dfcb4aCAS | 24882619PubMed |

Krausz, C., Guarducci, E., Becherini, L., Degl’Innocenti, S., Gerace, L., Balercia, G., and Forti, G. (2004). The clinical significance of the POLG gene polymorphism in male infertility. J. Clin. Endocrinol. Metab. 89, 4292–4297.
The clinical significance of the POLG gene polymorphism in male infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnslWhsLc%3D&md5=d2b1008957a19013a300d310a6b397bdCAS | 15356024PubMed |

Kumar, K., Venkatesh, S., Sharma, P. R., Tiwari, P. K., and Dada, R. (2011). DAZL 260A>G and MTHFR 677C>T variants in sperm DNA of infertile Indian men. Indian J. Biochem. Biophys. 48, 422–426.
| 22329245PubMed |

Kusz-Zamelczyk, K., Sajek, M., Spik, A., Glazar, R., Jedrzejczak, P., Latos-Bielenska, A., Kotecki, M., Pawelczyk, L., and Jaruzelska, J. (2013). Mutations of NANOS1, a human homologue of the Drosophila morphogen, are associated with a lack of germ cells in testes or severe oligo-astheno-teratozoospermia. J. Med. Genet. 50, 187–193.
Mutations of NANOS1, a human homologue of the Drosophila morphogen, are associated with a lack of germ cells in testes or severe oligo-astheno-teratozoospermia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1WlsLw%3D&md5=0dc979d2b60ff6c4b9bc7008031d7bcdCAS | 23315541PubMed |

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFags7s%3D&md5=57ea336f189b2b98cc3c664f7f874cebCAS | 5432063PubMed |

Lalmansingh, A. S., Urekar, C. J., and Reddi, P. P. (2011). TDP-43 is a transcriptional repressor: the testis-specific mouse acrv1 gene is a TDP-43 target in vivo. J. Biol. Chem. 286, 10 970–10 982.
TDP-43 is a transcriptional repressor: the testis-specific mouse acrv1 gene is a TDP-43 target in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjslKhurY%3D&md5=2f9d14668d862311514e36da4464ad35CAS |

Liao, T. T., Xiang, Z., Zhu, W. B., and Fan, L. Q. (2009). Proteome analysis of round-headed and normal spermatozoa by 2-D fluorescence difference gel electrophoresis and mass spectrometry. Asian J. Androl. 11, 683–693.
Proteome analysis of round-headed and normal spermatozoa by 2-D fluorescence difference gel electrophoresis and mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlChu7zE&md5=eb195b19ab746654cb448cbe773934aeCAS | 19823175PubMed |

Mercado, P. A., Ayala, Y. M., Romano, M., Buratti, E., and Baralle, F. E. (2005). Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene. Nucleic Acids Res. 33, 6000–6010.
Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Omt7zP&md5=b757f5b6add9461e23900df0a8ac3967CAS | 16254078PubMed |

Miyamoto, T., Tsujimura, A., Miyagawa, Y., Koh, E., Namiki, M., and Sengoku, K. (2012). Male infertility and its causes in human. Adv. Urol. 2012, Article ID 384520.
Male infertility and its causes in human.Crossref | GoogleScholarGoogle Scholar |

Nishimoto, Y., Ito, D., Yagi, T., Nihei, Y., Tsunoda, Y., and Suzuki, N. (2010). Characterization of alternative isoforms and inclusion body of the TAR DNA-binding protein-43. J. Biol. Chem. 285, 608–619.
Characterization of alternative isoforms and inclusion body of the TAR DNA-binding protein-43.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SqtrzL&md5=f48dffd2d0b82fb95acdb1e10ea3505dCAS | 19887443PubMed |

Ou, S. H., Wu, F., Harrich, D., Garcia-Martinez, L. F., and Gaynor, R. B. (1995). Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J. Virol. 69, 3584–3596.
| 1:CAS:528:DyaK2MXls1yitLY%3D&md5=598e88fdcff8a1f7e4e5f4044ed4162eCAS | 7745706PubMed |

Parte, P. P., Rao, P., Redij, S., Lobo, V., D’Souza, S. J., Gajbhiye, R., and Kulkarni, V. (2012). Sperm phosphoproteome profiling by ultra performance liquid chromatography followed by data independent analysis (LC-MS(E)) reveals altered proteomic signatures in asthenozoospermia. J. Proteomics 75, 5861–5871.
Sperm phosphoproteome profiling by ultra performance liquid chromatography followed by data independent analysis (LC-MS(E)) reveals altered proteomic signatures in asthenozoospermia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVOgs7fK&md5=7f734a636018e91c41320aa8b9b03d49CAS | 22796355PubMed |

Pereza, N., Ostojic, S., Kapovic, M., and Buretic-Tomljanovic, A. (2013). Insulin-like growth factor 2 and insulin-like growth factor 2 receptor gene polymorphisms in idiopathic male infertility. J. Reprod. Med. 58, 132–136.
| 1:CAS:528:DC%2BC3sXmtVyqsbY%3D&md5=c8770a2d3c8cd82297ff1d1fb45bff45CAS | 23539881PubMed |

Polymenidou, M., Lagier-Tourenne, C., Hutt, K. R., Huelga, S. C., Moran, J., Liang, T. Y., Ling, S. C., Sun, E., Wancewicz, E., Mazur, C., Kordasiewicz, H., Sedaghat, Y., Donohue, J. P., Shiue, L., Bennett, C. F., Yeo, G. W., and Cleveland, D. W. (2011). Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 14, 459–468.
Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFensb0%3D&md5=44714a64c5609395a517b2c3cd03a04cCAS | 21358643PubMed |

Reijo, R., Lee, T. Y., Salo, P., Alagappan, R., Brown, L. G., Rosenberg, M., Rozen, S., Jaffe, T., Straus, D., and Hovatta, O. (1995). Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nat. Genet. 10, 383–393.
Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsVWlu7g%3D&md5=cc6328f5cddceac50bb6a4ad6bdb748dCAS | 7670487PubMed |

Rolland, A. D., Lavigne, R., Dauly, C., Calvel, P., Kervarrec, C., Freour, T., Evrard, B., Rioux-Leclercq, N., Auger, J., and Pineau, C. (2013). Identification of genital tract markers in the human seminal plasma using an integrative genomics approach. Hum. Reprod. 28, 199–209.
Identification of genital tract markers in the human seminal plasma using an integrative genomics approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVGms77K&md5=e23967cddd26116a6660521b023b4e13CAS | 23024119PubMed |

Rutherford, N. J., Zhang, Y. J., Baker, M., Gass, J. M., Finch, N. A., Xu, Y. F., Stewart, H., Kelley, B. J., Kuntz, K., Crook, R. J., Sreedharan, J., Vance, C., Sorenson, E., Lippa, C., Bigio, E. H., Geschwind, D. H., Knopman, D. S., Mitsumoto, H., Petersen, R. C., Cashman, N. R., Hutton, M., Shaw, C. E., Boylan, K. B., Boeve, B., Graff-Radford, N. R., Wszolek, Z. K., Caselli, R. J., Dickson, D. W., Mackenzie, I. R., Petrucelli, L., and Rademakers, R. (2008). Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet. 4, e1000193.
Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis.Crossref | GoogleScholarGoogle Scholar | 18802454PubMed |

Safarinejad, M. R., Shafiei, N., and Safarinejad, S. (2010a). The association of glutathione-S-transferase gene polymorphisms (GSTM1, GSTT1, GSTP1) with idiopathic male infertility. J. Hum. Genet. 55, 565–570.
The association of glutathione-S-transferase gene polymorphisms (GSTM1, GSTT1, GSTP1) with idiopathic male infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2ms7jM&md5=6ec25b8fee203386abf61a99655d766fCAS | 20505681PubMed |

Safarinejad, M. R., Shafiei, N., and Safarinejad, S. (2010b). The role of endothelial nitric oxide synthase (eNOS) T-786C, G894T, and 4a/b gene polymorphisms in the risk of idiopathic male infertility. Mol. Reprod. Dev. 77, 720–727.
The role of endothelial nitric oxide synthase (eNOS) T-786C, G894T, and 4a/b gene polymorphisms in the risk of idiopathic male infertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFGnsbc%3D&md5=621bd00141986a2aba31b0da117973feCAS | 20586099PubMed |

Sephton, C. F., Good, S. K., Atkin, S., Dewey, C. M., Mayer, P., Herz, J., and Yu, G. (2010). TDP-43 is a developmentally regulated protein essential for early embryonic development. J. Biol. Chem. 285, 6826–6834.
TDP-43 is a developmentally regulated protein essential for early embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXit1ait7k%3D&md5=047cea875f57aad2b41904ec26ec1db5CAS | 20040602PubMed |

Shiina, Y., Arima, K., Tabunoki, H., and Satoh, J. (2010). TDP-43 dimerizes in human cells in culture. Cell. Mol. Neurobiol. 30, 641–652.
TDP-43 dimerizes in human cells in culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVSltL8%3D&md5=09e54daa9250a3fb5820953649ecd0c0CAS | 20043239PubMed |

Siva, A. B., Kameshwari, D. B., Singh, V., Pavani, K., Sundaram, C. S., Rangaraj, N., Deenadayal, M., and Shivaji, S. (2010). Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex. Mol. Hum. Reprod. 16, 452–462.
Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVyjsbg%3D&md5=06e3bd134c85e3c78dc44768353307b1CAS | 20304782PubMed |

Sun, C., Skaletsky, H., Birren, B., Devon, K., Tang, Z., Silber, S., Oates, R., and Page, D. C. (1999). An azoospermic man with a de novo point mutation in the Y-chromosomal gene USP9Y. Nat. Genet. 23, 429–432.
An azoospermic man with a de novo point mutation in the Y-chromosomal gene USP9Y.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFOktbs%3D&md5=51715f7db09aaf10f9ffa12f2b4fdcc6CAS | 10581029PubMed |

Teng, Y. N., Chang, Y. P., Tseng, J. T., Kuo, P. H., Lee, I. W., Lee, M. S., and Kuo, P. L. (2012). A single-nucleotide polymorphism of the DAZL gene promoter confers susceptibility to spermatogenic failure in the Taiwanese Han. Hum. Reprod. 27, 2857–2865.
A single-nucleotide polymorphism of the DAZL gene promoter confers susceptibility to spermatogenic failure in the Taiwanese Han.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Wlsb3M&md5=1ab5b649dc48a99ca85181a9d18a43a7CAS | 22752612PubMed |

Tiepolo, L., and Zuffardi, O. (1976). Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm. Hum. Genet. 34, 119–124.
Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2s%2FntVaqsw%3D%3D&md5=729f2b325585913de1343da9d3c32dc3CAS | 1002136PubMed |

Towbin, H., Staehelin, T., and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Biotechnology 24, 145–149.

VanGompel, M. J., and Xu, E. Y. (2011). The roles of the DAZ family in spermatogenesis: more than just translation? Spermatogenesis 1, 36–46.
The roles of the DAZ family in spermatogenesis: more than just translation?Crossref | GoogleScholarGoogle Scholar | 22523742PubMed |

Venables, J. P., Elliott, D. J., Makarova, O. V., Makarov, E. M., Cooke, H. J., and Eperon, I. C. (2000). RBMY, a probable human spermatogenesis factor, and other hnRNP G proteins interact with Tra2beta and affect splicing. Hum. Mol. Genet. 9, 685–694.
RBMY, a probable human spermatogenesis factor, and other hnRNP G proteins interact with Tra2beta and affect splicing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitlaisrk%3D&md5=59b0b15c6742477d647d6d2eb9415ec1CAS | 10749975PubMed |

Wang, H. Y., Wang, I. F., Bose, J., and Shen, C. K. (2004). Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics 83, 130–139.
Structural diversity and functional implications of the eukaryotic TDP gene family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsFeltLk%3D&md5=ea2708db8e1ba6ad5aeca2fe6d51b041CAS | 14667816PubMed |

Weng, S. L., Taylor, S. L., Morshedi, M., Schuffner, A., Duran, E. H., Beebe, S., and Oehninger, S. (2002). Caspase activity and apoptotic markers in ejaculated human sperm. Mol. Hum. Reprod. 8, 984–991.
Caspase activity and apoptotic markers in ejaculated human sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFOqu7c%3D&md5=dce20f4337fdd72b451a8153e9e42834CAS | 12397210PubMed |

Winton, M. J., Igaz, L. M., Wong, M. M., Kwong, L. K., Trojanowski, J. Q., and Lee, V. M. (2008). Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J. Biol. Chem. 283, 13 302–13 309.
Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltlGqsbk%3D&md5=fb7a6c8a676169744ebe9a2edc32d63eCAS |

Xu, Z. S. (2012). Does a loss of TDP-43 function cause neurodegeneration? Mol. Neurodegener. 7, 27.
Does a loss of TDP-43 function cause neurodegeneration?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSiurjE&md5=792064808d6da43235cbb2640322363cCAS | 22697423PubMed |

Xu, M., Xiao, J., Chen, J., Li, J., Yin, L., Zhu, H., Zhou, Z., and Sha, J. (2003). Identification and characterization of a novel human testis-specific Golgi protein, NYD-SP12. Mol. Hum. Reprod. 9, 9–17.
Identification and characterization of a novel human testis-specific Golgi protein, NYD-SP12.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXislSktrk%3D&md5=1b91d256369dfcd4c9c24520af12ddb4CAS | 12529416PubMed |

Yatsenko, A. N., Roy, A., Chen, R., Ma, L., Murthy, L. J., Yan, W., Lamb, D. J., and Matzuk, M. M. (2006). Non-invasive genetic diagnosis of male infertility using spermatozoal RNA: KLHL10 mutations in oligozoospermic patients impair homodimerization. Hum. Mol. Genet. 15, 3411–3419.
Non-invasive genetic diagnosis of male infertility using spermatozoal RNA: KLHL10 mutations in oligozoospermic patients impair homodimerization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1KksbbJ&md5=b29c258b7bf9ffbdaf42d0a2801d698bCAS | 17047026PubMed |

Ye, L. W., Yu, Q. F., Yang, X. X., Li, J. P., Wu, X. Q., Zhang, Y. H., and Mao, X. M. (2013). [DAZL gene polymorphisms and asthenoteratozoospermia.] Zhonghua Nan Ke Xue 19, 311–314.
| 1:CAS:528:DC%2BC3sXhtl2ms7zE&md5=fe0042ded48301f1ccfe0d57de57fb2fCAS | 23678708PubMed |

Zalata, A., Atwa, A., El-Naser, B. A., Aziz, A., El-Baz, R., Elhanbly, S., and Mostafa, T. (2013). Tumor necrosis factor-alpha gene polymorphism relationship to seminal variables in infertile men. Urology 81, 962–966.
Tumor necrosis factor-alpha gene polymorphism relationship to seminal variables in infertile men.Crossref | GoogleScholarGoogle Scholar | 23465534PubMed |

Zhang, Y. J., Xu, Y. F., Dickey, C. A., Buratti, E., Baralle, F., Bailey, R., Pickering-Brown, S., Dickson, D., and Petrucelli, L. (2007). Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. J. Neurosci. 27, 10 530–10 534.
Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGmt7fO&md5=5ae69564483681b679b36a7b33d37cedCAS |

Zhang, Y. J., Xu, Y. F., Cook, C., Gendron, T. F., Roettges, P., Link, C. D., Lin, W. L., Tong, J., Castanedes-Casey, M., Ash, P., Gass, J., Rangachari, V., Buratti, E., Baralle, F., Golde, T. E., Dickson, D. W., and Petrucelli, L. (2009). Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc. Natl Acad. Sci. USA 106, 7607–7612.
Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1KktLo%3D&md5=6df50a262c4c30c14df5206b9e25412aCAS | 19383787PubMed |

Zhang, Y. J., Caulfield, T., Xu, Y. F., Gendron, T. F., Hubbard, J., Stetler, C., Sasaguri, H., Whitelaw, E. C., Cai, S., Lee, W. C., and Petrucelli, L. (2013). The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation. Hum. Mol. Genet. 22, 3112–3122.
The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKiu73O&md5=1bebcd3dad850b8e63d495fd54b16f74CAS | 23575225PubMed |