Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH FRONT

Determinants of valid measurements of global changes in 5′-methylcytosine and 5′-hydroxymethylcytosine by immunolocalisation in the early embryo

J. Salvaing A , Y. Li B , N. Beaujean A C and C. O’Neill B C
+ Author Affiliations
- Author Affiliations

A INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France.

B Centre for Developmental and Regenerative Medicine, Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, NSW 2065, Australia.

C Corresponding authors. Email: nathalie.beaujean@jouy.inra.fr; chris.oneill@sydney.edu.au

Reproduction, Fertility and Development 27(5) 755-764 https://doi.org/10.1071/RD14136
Submitted: 24 April 2014  Accepted: 26 August 2014   Published: 9 October 2014

Abstract

A classical model of epigenetic reprogramming of methyl-cytosine–phosphate–guanine (CpG) dinucleotides within the genome of the early embryo involves a process of active demethylation of the paternally derived genome immediately following fertilisation, creating marked asymmetry in global cytosine methylation levels in male and female pronuclei, followed by passive demethylation of the maternally derived genome over subsequent cell cycles. This model has dominated thinking in developmental epigenetics over recent decades. Recent re-analyses of the model show that demethylation of the paternally derived genome is more modest than formerly thought and results in overall similar levels of methylation of the paternal and maternal pronuclei in presyngamal zygotes, although there is little evidence for a pervasive process of passive demethylation during the cleavage stage of development. In contrast, the inner cell mass of the blastocyst shows some loss of methylation within specific classes of loci. Improved methods of chemical analysis now allow global base-level analysis of modifications to CpG dinucleotides within the cells of the early embryo, yet the low cost and convenience of the immunolocalisation techniques mean that they still have a valuable place in the analysis of the epigenetics of embryo development. In this review we consider the key strengths and weaknesses of this methodology and some factors required for its valid use and interpretation.

Additional keywords: acid treatment, quantification, trypsin.


References

Abdalla, H., Yoshizawa, Y., and Hochi, S. (2009). Active demethylation of paternal genome in mammalian zygotes. J. Reprod. Dev. 55, 356–360.
Active demethylation of paternal genome in mammalian zygotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOmtLnK&md5=9d9a2ef96c70bcfbae4cb888bf66916eCAS | 19721335PubMed |

Adenot, P. G., Mercier, Y., Renard, J. P., and Thompson, E. M. (1997). Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124, 4615–4625.
| 1:CAS:528:DyaK1cXht12jsA%3D%3D&md5=25bfe0c91394ab99993131a866d566a5CAS | 9409678PubMed |

Aguirre-Lavin, T., Adenot, P., Bonnet-Garnier, A., Lehmann, G., Fleurot, R., Boulesteix, C., Debey, P., and Beaujean, N. (2012). 3D-FISH analysis of embryonic nuclei in mouse highlights several abrupt changes of nuclear organization during preimplantation development. BMC Dev. Biol. 12, 30.
3D-FISH analysis of embryonic nuclei in mouse highlights several abrupt changes of nuclear organization during preimplantation development.Crossref | GoogleScholarGoogle Scholar | 23095683PubMed |

Barton, S. C., Arney, K. L., Shi, W., Niveleau, A., Fundele, R., Surani, M. A., and Haaf, T. (2001). Genome-wide methylation patterns in normal and uniparental early mouse embryos. Hum. Mol. Genet. 10, 2983–2987.
Genome-wide methylation patterns in normal and uniparental early mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVGhsQ%3D%3D&md5=9191fb98d01c24fd9b552c7a7941189fCAS | 11751680PubMed |

Beaujean, N., Hartshorne, G., Cavilla, J., Taylor, J., Gardner, J., Wilmut, I., Meehan, R., and Young, L. (2004a). Non-conservation of mammalian preimplantation methylation dynamics. Curr. Biol. 14, R266–R267.
Non-conservation of mammalian preimplantation methylation dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXivVKltb4%3D&md5=6fcd265512bd975c345755664ad4ac41CAS | 15062117PubMed |

Beaujean, N., Taylor, J. E., McGarry, M., Gardner, J. O., Wilmut, I., Loi, P., Ptak, G., Galli, C., Lazzari, G., Bird, A., Young, L. E., and Meehan, R. R. (2004b). The effect of interspecific oocytes on demethylation of sperm DNA. Proc. Natl Acad. Sci. USA 101, 7636–7640.
The effect of interspecific oocytes on demethylation of sperm DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlOltb0%3D&md5=c46856527a170853eb4031a0be42f0a3CAS | 15136736PubMed |

Bestor, T. H. (2000). The DNA methyltransferases of mammals. Hum. Mol. Genet. 9, 2395–2402.
The DNA methyltransferases of mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnslGqs7k%3D&md5=6bbc3f1ff122423527699d08e314a87fCAS | 11005794PubMed |

Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21.
DNA methylation patterns and epigenetic memory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xos1ehsQ%3D%3D&md5=906088678456ca13ce59431a8b13d05eCAS | 11782440PubMed |

Booth, M. J., Branco, M. R., Ficz, G., Oxley, D., Krueger, F., Reik, W., and Balasubramanian, S. (2012). Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336, 934–937.
Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmvFensbc%3D&md5=cd44ab6d8992a1c7bc4804bb595fcd68CAS | 22539555PubMed |

Bourc’his, D., Le Bourhis, D., Patin, D., Niveleau, A., Comizzoli, P., Renard, J. P., and Viegas-Péquignot, E. (2001). Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr. Biol. 11, 1542–1546.
Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsF2ms7o%3D&md5=a1da80f40ec970d81b6981323deb38e2CAS | 11591324PubMed |

Carlson, L. L., Page, A. W., and Bestor, T. H. (1992). Properties and localisation of DNA methyltransferase in preimplanation mouse embryos: implications for genomic imprinting. Genes Dev. 6, 2536–2541.
Properties and localisation of DNA methyltransferase in preimplanation mouse embryos: implications for genomic imprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXnslOqtg%3D%3D&md5=adb1a6994a37205275f7546664f32aecCAS | 1340468PubMed |

Çelik, S., Li, Y., and O’Neill, C. (2014). The exit of mouse embryonic fibroblasts from the cell-cycle changes the nature of solvent exposure of the 5′-methylcytosine epitope within chromatin. PLoS ONE 9, e92523.
The exit of mouse embryonic fibroblasts from the cell-cycle changes the nature of solvent exposure of the 5′-methylcytosine epitope within chromatin.Crossref | GoogleScholarGoogle Scholar | 24705067PubMed |

de Montera, B., Fournier, E., Allah Shojaei Saadi, H., Gagné, D., Laflamme, I., Blondin, P., Sirard, M.-A., and Robert, C. (2013). Combined methylation mapping of 5mC and 5hmC during early embryonic stages in bovine. BMC Genomics 14, 406.
Combined methylation mapping of 5mC and 5hmC during early embryonic stages in bovine.Crossref | GoogleScholarGoogle Scholar | 23773395PubMed |

Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V., Walter, J., Wolf, E., and Reik, W. (2001). Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl Acad. Sci. USA 98, 13 734–13 738.
Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVyntrs%3D&md5=e73da2e3bdcb4689b20df1fbac5b40b5CAS |

Deshmukh, R. S., Østrup, O., Østrup, E., Vejlsted, M., Niemann, H., Lucas-Hahn, A., Petersen, B., Li, J., Callesen, H., and Hyttel, P. (2011). DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer. Epigenetics 6, 177–187.
DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs12ksLY%3D&md5=591615abb4092ec0f1627d508d4fabb7CAS | 20935454PubMed |

el Hajj, N., and Haaf, T. (2013). Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil. Steril. 99, 632–641.
Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWmsbs%3D&md5=cd51395c76d4c695b8ab0b30986538bcCAS | 23357453PubMed |

Fulka, H., Mrazek, M., Tepla, O., and Fulka, J. J. (2004). DNA methylation pattern in human zygotes and developing embryos. Reproduction 128, 703–708.
DNA methylation pattern in human zygotes and developing embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFSlug%3D%3D&md5=a99d1baf063b18aa342876923378eb5bCAS | 15579587PubMed |

Fulka, J., Fulka, H., Slavik, T., Okada, K., and Fulka, J. (2006). DNA methylation pattern in pig in vivo produced embryos. Histochem. Cell Biol. 126, 213–217.
DNA methylation pattern in pig in vivo produced embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnvF2ksLw%3D&md5=3faf436641e3362e668dd086faffb790CAS | 16435122PubMed |

Gu, T.-P., Guo, F., Yang, H., Wu, H.-P., Xu, G.-F., Liu, W., Xie, Z.-G., Shi, L., He, X., Jin, S.-g., Iqbal, K., Shi, Y. G., Deng, Z., Szabo, P. E., Pfeifer, G. P., Li, J., and Xu, G.-L. (2011). The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606–610.
The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFersL7M&md5=2478c1cc5a5c00b8d36c3d1ff935f2a3CAS | 21892189PubMed |

Guo, J. U., Su, Y., Zhong, C., Ming, G., and Song, H. (2011). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423–434.
Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFShsrs%3D&md5=01bd524337656d460a74583f14ab8418CAS | 21496894PubMed |

Guo, H., Zhu, P., Wu, X., Li, X., Wen, L., and Tang, F. (2013). Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 23, 2126–2135.
Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFCisLjN&md5=2387520f7a7d9db841895ed9c1e29a20CAS | 24179143PubMed |

He, Y.-F., Li, B.-Z., Li, Z., Liu, P., Wang, Y., Tang, Q., Ding, J., Jia, Y., Chen, Z., Li, L., Sun, Y., Li, X., Dai, Q., Song, C.-X., Zhang, K., He, C., and Xu, G.-L. (2011). Tet-Mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307.
Tet-Mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2jt7nO&md5=39d78ed002160aa0f807e4d69fe2d945CAS | 21817016PubMed |

Hotchkiss, R. D. (1948). The quantitative separation of purines, pyrimidines and nucleosides by paper chromatography. J. Biol. Chem. 175, 315–332.
| 1:CAS:528:DyaH1cXkt1Sqtg%3D%3D&md5=6f494661d7a12006fb99470611f85ce3CAS | 18873306PubMed |

Hou, J., Liu, L., Zhang, J., Cui, X.-H., Yan, F.-X., Guan, H., Chen, Y.-F., and An, X.-R. (2008). Epigenetic modification of histone 3 at lysine 9 in sheep zygotes and its relationship with DNA methylation. BMC Dev. Biol. 8, 60.
Epigenetic modification of histone 3 at lysine 9 in sheep zygotes and its relationship with DNA methylation.Crossref | GoogleScholarGoogle Scholar | 18507869PubMed |

Huang, Y., Pastor, W. A., Shen, Y., Tahiliani, M., Liu, D. R., and Rao, A. (2010). The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS ONE 5, e8888.
The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing.Crossref | GoogleScholarGoogle Scholar | 20126651PubMed |

Iqbal, K., Jin, S.-G., Pfeifer, G. P., and Szabó, P. E. (2011). Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl Acad. Sci. USA 108, 3642–3647.
Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFKqs7Y%3D&md5=e5f377b120f2d0f9aeeb63c0541538f0CAS | 21321204PubMed |

Ito, S., Shen, L., Dai, Q., Wu, S. C., Collins, L. B., Swenberg, J. A., He, C., and Zhang, Y. (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303.
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2jt7nN&md5=965a1850869c86e16f5c4cbf2601a80dCAS | 21778364PubMed |

Jeong, Y.-S., Yeo, S., Park, J.-S., Koo, D.-B., Chang, W.-K., Lee, K.-K., and Kang, Y.-K. (2007). DNA methylation state is preserved in the sperm-derived pronucleus of the pig zygote. Int. J. Dev. Biol. 51, 707–714.
DNA methylation state is preserved in the sperm-derived pronucleus of the pig zygote.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVygsLnI&md5=a3fec1cf5281f0d3cf9fdd493cebe217CAS | 17939117PubMed |

Kohli, R. M., and Zhang, Y. (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479.
TET enzymes, TDG and the dynamics of DNA demethylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1KrurzF&md5=f6c2753a25efae048ba1d29e89c32705CAS | 24153300PubMed |

Kriaucionis, S., and Heintz, N. (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930.
The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslWnurk%3D&md5=8bad206a11f9e80a8ae50cc45d774211CAS | 19372393PubMed |

Lane, N., Dean, W., Erhardt, S., Hajkova, P., Surani, A., Walter, J., and Reik, W. (2003). Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35, 88–93.
Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt12rtb4%3D&md5=3994e21f9133fe73b9a8413180a82083CAS | 12533790PubMed |

Lepikhov, K., Zakhartchenko, V., Hao, R., Yang, F., Wrenzycki, C., Niemann, H., Wolf, E., and Walter, J. (2008). Evidence for conserved DNA and histone H3 methylation reprogramming in mouse, bovine and rabbit zygotes. Epigenetics Chromatin 1, 8.
Evidence for conserved DNA and histone H3 methylation reprogramming in mouse, bovine and rabbit zygotes.Crossref | GoogleScholarGoogle Scholar | 19014417PubMed |

Li, Y., and O’Neill, C. (2012). Persistence of cytosine methylation of DNA following fertilisation in the mouse. PLoS ONE 7, e30687.
Persistence of cytosine methylation of DNA following fertilisation in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xitlaqsb8%3D&md5=86e625c4ffb854e8dd144b981bb46242CAS | 22292019PubMed |

Li, Y., and O’Neill, C. (2013). 5′-Methylcytosine and 5′-hydroxymethylcytosine each provide epigenetic information to the mouse zygote. PLoS ONE 8, e63689.
5′-Methylcytosine and 5′-hydroxymethylcytosine each provide epigenetic information to the mouse zygote.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1yntr0%3D&md5=14b42ab2d3b20c045b94e4e585c7b742CAS | 23691085PubMed |

Markovits, J., Roques, B. P., and Le Pecq, J.-B. (1979). Ethidium dimer: a new reagent for the fluorimetric determination of nucleic acids. Anal. Biochem. 94, 259–264.
Ethidium dimer: a new reagent for the fluorimetric determination of nucleic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhvVals78%3D&md5=d7c92f595ff2252f96df94ecac1cfc34CAS | 464292PubMed |

Mayer, W., Niveleau, A., Walter, J., Fundele, R., and Haaf, T. (2000). Demethylation of the zygotic paternal genome. Nature 403, 501–502.
Demethylation of the zygotic paternal genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1ShsbY%3D&md5=198292bceaebe4c2b12100b3179ed79bCAS | 10676950PubMed |

Morgan, H. D., Jin, X. L., Li, A., Whitelaw, E., and O’Neill, C. (2008). The culture of zygotes to the blastocyst stage changes the postnatal expression of an epigentically labile allele, Agouti viable yellow, in mice. Biol. Reprod. 79, 618–623.
The culture of zygotes to the blastocyst stage changes the postnatal expression of an epigentically labile allele, Agouti viable yellow, in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCqtbbN&md5=a04a0de11f9d6f2e181065fe4afdbbb7CAS | 18562706PubMed |

Ooi, S. K. T., and Bestor, T. H. (2008). The colorful history of active DNA demethylation. Cell 133, 1145–1148.
The colorful history of active DNA demethylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFWku7o%3D&md5=46f51eac1fdef27d17465b9b160fb33fCAS |

Ooi, S. K. T., O’Donnell, A. H., and Bestor, T. H. (2009). Mammalian cytosine methylation at a glance. J. Cell Sci. 122, 2787–2791.
Mammalian cytosine methylation at a glance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOgsb7L&md5=09781a7a18446c671ad5e73274e7c92fCAS |

Park, J. S., Jeong, Y. S., Shin, S. T., Lee, K.-K., and Kang, Y.-K. (2007). Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes. Dev. Dyn. 236, 2523–2533.
Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKjurfN&md5=e882c8312af81e4c9567be093ea02bc4CAS | 17676637PubMed |

Probst, A. V., Santos, F., Reik, W., Almouzni, G., and Dean, W. (2007). Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote. Chromosoma 116, 403–415.
Structural differences in centromeric heterochromatin are spatially reconciled on fertilisation in the mouse zygote.Crossref | GoogleScholarGoogle Scholar | 17447080PubMed |

Ratnam, S., Mertineit, C., Ding, F., Howell, C. Y., Clarke, H. J., Bestor, T. H., Chaillet, J. R., and Trasler, J. M. (2002). Dynamics of Dnmt1 methyltransferase expression and intracellular localization during oogenesis and preimplantation development. Dev. Biol. 245, 304–314.
Dynamics of Dnmt1 methyltransferase expression and intracellular localization during oogenesis and preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFyju7o%3D&md5=8327e7179d27d282e2fb9e8cf319d5f8CAS | 11977983PubMed |

Reis e Silva, A. R., Adenot, P., Daniel, N., Archilla, C., Peynot, N., Lucci, C. M., Beaujean, N., and Duranthon, V. (2011). Dynamics of DNA methylation levels in maternal and paternal rabbit genomes after fertilization. Epigenetics 6, 987–993.
Dynamics of DNA methylation levels in maternal and paternal rabbit genomes after fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit1yjur8%3D&md5=c535e2fbaeaf7c2116759550d4da7c8dCAS |

Reis e Silva, A. R., Bruno, C., Fleurot, R., Daniel, N., Archilla, C., Peynot, N., Lucci, C. M., Beaujean, N., and Duranthon, V. (2012). Alteration of DNA demethylation dynamics by in vitro culture conditions in rabbit pre-implantation embryos. Epigenetics 7, 440–446.
Alteration of DNA demethylation dynamics by in vitro culture conditions in rabbit pre-implantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCjsbzO&md5=6e687065004c66464293772db4816fdaCAS | 22419129PubMed |

Rivera, R. M., Stein, P., Weaver, J. R., Mager, J., Schultz, R. M., and Bartolomei, M. S. (2008). Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on Day 9.5 of development. Hum. Mol. Genet. 17, 1–14.
Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on Day 9.5 of development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVKiur%2FJ&md5=18c99e6eece81b0e34d7e759bebafb37CAS | 17901045PubMed |

Rougier, N., Bourc’his, D., Molina Gomes, D. M., Niveleau, A., Plachot, M., Paldi, A., and Viegas-Pequignot, E. (1998). Chromosome methylation patterns during mammalian preimplantation development. Genes Dev. 12, 2108–2113.
Chromosome methylation patterns during mammalian preimplantation development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvF2rs70%3D&md5=55d3d04c49e16b13732db538ffc3574aCAS | 9679055PubMed |

Salvaing, J., Aguirre-Lavin, T., Boulesteix, C., Lehmann, G., Debey, P., and Beaujean, N. (2012). 5-Methylcytosine and 5-hydroxymethylcytosine spatiotemporal profiles in the mouse zygote. PLoS ONE 7, e38156.
5-Methylcytosine and 5-hydroxymethylcytosine spatiotemporal profiles in the mouse zygote.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlCqsrc%3D&md5=514443c09e2b56f1b801debf32c71b10CAS | 22693592PubMed |

Santos, F., Hendrich, B., Reik, W., and Dean, W. (2002). Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172–182.
Dynamic reprogramming of DNA methylation in the early mouse embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVWhsrg%3D&md5=279ad82074a29de555d74c8e5daaf379CAS | 11784103PubMed |

Santos, F., Peat, J., Burgess, H., Rada, C., Reik, W., and Dean, W. (2013). Active demethylation in mouse zygotes involves cytosine deamination and base excision repair. Epigenetics Chromatin 6, 39.
Active demethylation in mouse zygotes involves cytosine deamination and base excision repair.Crossref | GoogleScholarGoogle Scholar | 24279473PubMed |

Shi, W., and Haaf, T. (2002). Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol. Reprod. Dev. 63, 329–334.
Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnslSnsbg%3D&md5=58d24e2910dc1a4bfed53a7a58a88786CAS | 12237948PubMed |

Shi, W., Dirim, F., Wolf, E., Zakhartchenko, V., and Haaf, T. (2004). Methylation reprogramming and chromosomal aneuploidy in in vivo fertilized and cloned rabbit preimplantation embryos. Biol. Reprod. 71, 340–347.
Methylation reprogramming and chromosomal aneuploidy in in vivo fertilized and cloned rabbit preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFKrsr4%3D&md5=3952a747e7f4d87b6b66678f33da4807CAS | 15028628PubMed |

Smallwood, S. A., Tomizawa, S.-i., Krueger, F., Ruf, N., Carli, N., Segonds-Pichon, A., Sato, S., Hata, K., Andrews, S. R., and Kelsey, G. (2011). Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat. Genet. 43, 811–814.
Dynamic CpG island methylation landscape in oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotV2ht7g%3D&md5=449b4e2ce4dbdf292329ba2089bc2a33CAS | 21706000PubMed |

Smith, Z. D., Chan, M. M., Mikkelsen, T. S., Gu, H., Gnirke, A., Regev, A., and Meissner, A. (2012). A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339–344.
A unique regulatory phase of DNA methylation in the early mammalian embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xks1yrsbw%3D&md5=de248ce4dfeac66796f9c788a937d7f7CAS | 22456710PubMed |

Stojanov, T., and O’Neill, C. (2001). In vitro fertilization causes epigenetic modifications to the onset of gene expression from the zygotic genome in mice. Biol. Reprod. 64, 696–705.
In vitro fertilization causes epigenetic modifications to the onset of gene expression from the zygotic genome in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnsVOnsw%3D%3D&md5=e5e5d23c8ee6a748a47ec6c4b494254bCAS | 11159375PubMed |

Tahiliani, M., Koh, K. P., Shen, Y., Pastor, W. A., Bandukwala, H., Brudno, Y., Agarwal, S., Iyer, L. M., Liu, D. R., Aravind, L., and Rao, A. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935.
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslWnurY%3D&md5=b23bf08fbe7de45c795297624fd77e4bCAS | 19372391PubMed |

Tan, L., and Shi, Y. G. (2012). Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 139, 1895–1902.
Tet family proteins and 5-hydroxymethylcytosine in development and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGlsLrL&md5=8d5625995dfa711d87debf73fed7d498CAS | 22569552PubMed |

Wang, L., Zhang, J., Duan, J., Gao, X., Zhu, W., Lu, X., Yang, L., Zhang, J., Li, G., Ci, W., Li, W., Zhou, Q., Aluru, N., Tang, F., He, C., Huang, X., and Liu, J. (2014). Programming and inheritance of parental DNA methylomes in mammals. Cell 157, 979–991.
Programming and inheritance of parental DNA methylomes in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotFGntb0%3D&md5=42f710dc43b583f5cf9dfabe796ee9abCAS | 24813617PubMed |

Wossidlo, M., Nakamura, T., Lepikhov, K., Marques, C. J., Zakhartchenko, V., Boiani, M., Arand, J., Nakano, T., Reik, W., and Walter, J. (2011). 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2, 241.
5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming.Crossref | GoogleScholarGoogle Scholar | 21407207PubMed |

Wu, S. C., and Zhang, Y. (2010). Active DNA demethylation: many roads lead to Rome. Nat. Rev. Mol. Cell Biol. 11, 607–620.
Active DNA demethylation: many roads lead to Rome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXps1egtbY%3D&md5=b38f3c3f0f5722843fc488471c98cbebCAS | 20683471PubMed |

Yu, M., Hon, G., Szulwach, K., Song, C.-X., Zhang, L., Kim, A., Li, X., Dai, Q., Shen, Y., Park, B., Min, J.-H., Jin, P., Ren, B., and He, C. (2012). Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368–1380.
Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xntlylu7s%3D&md5=3795491621d5de20d81b48c12504f836CAS | 22608086PubMed |