Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Treatment of buffalo (Bubalus bubalis) donor cells with trichostatin A and 5-aza-2’-deoxycytidine alters their growth characteristics, gene expression and epigenetic status and improves the in vitro developmental competence, quality and epigenetic status of cloned embryos

M. Saini A , N. L. Selokar A B , H. Agrawal A , S. K. Singla A , M. S. Chauhan A , R. S. Manik A and P. Palta A C
+ Author Affiliations
- Author Affiliations

A Animal Biotechnology Centre, National Dairy Research Institute, Karnal-132001, Haryana, India.

B Animal Physiology and Reproduction Division, Central Institute for Research on Buffaloes, Hisar-125001, Haryana, India.

C Corresponding author. Email: prabhatpalta@yahoo.com

Reproduction, Fertility and Development 28(6) 824-837 https://doi.org/10.1071/RD14176
Submitted: 28 May 2014  Accepted: 8 October 2014   Published: 20 November 2014

Abstract

We examined the effects of treating buffalo skin fibroblast donor cells with trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, and 5-aza-2′-deoxycytidine (5azadC), a DNA methyltransferase (DNMT) inhibitor, on the cells and embryos produced by hand-made cloning. Treatment of donor cells with TSA or 5azadC resulted in altered expression levels of the HDAC1, DNMT1, DNMT3a, P53, CASPASE3 and CASPASE9 genes and global levels of acetylation of lysine at position 9 or 14 in histone 3 (H3K9/14ac), acetylation of lysine at position 5 in histone 4 (H4K5ac), acetylation of lysine at position 18 in histone 3 (H3K18ac) and tri-methylation of lysine at position 27 in histone 3 (H3K27me3). Moreover, global levels of DNA methylation and activity of DNMT1 and HDAC1 were decreased, while global acetylation of H3 and H3K9 was significantly increased in comparison to untreated cells. Simultaneous treatment of donor cells with TSA (50 nM) and 5azadC (7.5 nM) resulted in higher in vitro development to the blastocyst stage, reduction of the apoptotic index and the global level of H3K27 me3 and altered expression levels of HDAC1, P53, CASPASE3, CASPASE9 and DNMT3a in cloned blastocysts. Transfer of cloned embryos produced with donor cells treated with TSA led to the birth of a calf that survived for 21 days. These results show that treatment of buffalo donor cells with TSA and 5azadC improved developmental competence and quality of cloned embryos and altered their epigenetic status and gene expression, and that these beneficial effects were mediated by a reduction in DNA and histone methylation and an increase in histone acetylation in donor cells.

Additional keywords: cloning, development, embryo transfer, epigenetics, nuclear transfer, reprogramming.


References

Campbell, K. H. S., Fisher, P., Chen, W. C., Choi, I., Kelly, R. D., Lee, J. H., and Xhu, J. (2007). Somatic cell nuclear transfer: past, present and future perspectives. Theriogenology 68, S214–S231.
Somatic cell nuclear transfer: past, present and future perspectives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaitbo%3D&md5=5a21837893baa4db9d58bd251da487d4CAS |

Cervera, R. P., Marti-Gutierrez, N., Escorihuela, E., Moreno, R., and Stojkovic, M. (2009). Trichostatin A affects histone acetylation and gene expression in porcine somatic cell nuclear transfer embryos. Theriogenology 72, 1097–1110.
Trichostatin A affects histone acetylation and gene expression in porcine somatic cell nuclear transfer embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1Wmt7zP&md5=7b427211ad95de4fde4895828640779dCAS | 19765811PubMed |

Cui, X. S., Xu, Y. N., Shen, X. H., Zhang, L. Q., Zhang, J. B., and Kim, N. H. (2011). Trichostatin A modulates apoptotic-related gene expression and improves embryo viability in cloned bovine embryos. Cell. Reprogram. 13, 179–189.
Trichostatin A modulates apoptotic-related gene expression and improves embryo viability in cloned bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltVaksr4%3D&md5=6cb222a6456c6352bf0d8e3f0faf913eCAS | 21473694PubMed |

Ding, X., Wang, Y., Zhang, D., Wang, Y., Guo, Z., and Zhang, Y. (2008). Increased preimplantation development of cloned bovine embryos treated with 5-aza-20-deoxycytidine and trichostatin A. Theriogenology 70, 622–630.
Increased preimplantation development of cloned bovine embryos treated with 5-aza-20-deoxycytidine and trichostatin A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVCrur4%3D&md5=d6318c773548f4da74f763c0c34e03c0CAS | 18556056PubMed |

Enright, B. P., Kubota, C., Yang, X., and Tian, X. C. (2003). Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-29-deoxycytidine. Biol. Reprod. 69, 896–901.
Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-29-deoxycytidine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVeitb8%3D&md5=7af26d1e21b2ac324f2406afc2fea4dfCAS | 12748129PubMed |

Enright, B. P., Sung, L. Y., Chang, C. C., Yang, X., and Tian, X. C. (2005). Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-20-deoxycytidine. Biol. Reprod. 72, 944–948.
Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-20-deoxycytidine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis12hsLw%3D&md5=a5d9784789f3e7ca702320f3eac4e2c0CAS | 15601924PubMed |

Fahrudin, M., Otoi, T., Karja, N. W., Mori, M., Murakami, M., and Suzuki, T. (2002). Analysis of DNA fragmentation in bovine somatic nuclear transfer embryos using TUNEL. Reproduction 124, 813–819.
Analysis of DNA fragmentation in bovine somatic nuclear transfer embryos using TUNEL.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVWhsA%3D%3D&md5=8dda8f695b4fa18cf48d7b9e8e0b4803CAS | 12530919PubMed |

George, A., Sharma, R., Singh, K. P., Panda, S. K., Singla, S. K., Palta, P., Manik, R., and Chauhan, M. S. (2011). Production of cloned and transgenic embryos using buffalo (Bubalus bubalis) embryonic stem cell-like cells isolated from in vitro fertilised and cloned blastocysts. Cell. Reprogram. 13, 263–272.
Production of cloned and transgenic embryos using buffalo (Bubalus bubalis) embryonic stem cell-like cells isolated from in vitro fertilised and cloned blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFCntL0%3D&md5=68514fa5b0cf24dbd68d79bdd77a637aCAS | 21548826PubMed |

Hattori, N., Nishino, K., Ko, Y. G., Hattori, N., Ohgane, J., Tanaka, S., and Shiota, K. (2004). Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J. Biol. Chem. 279, 17 063–17 069.
Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1Ggt70%3D&md5=1bac7b43dd4a197b54709265931ef97cCAS |

Heyman, Y., Chavatte-Palmer, P., LeBourhis, D., Camous, S., Vignon, X., and Renard, J. P. (2002). Frequency and occurrence of late-gestation losses from cattle cloned embryos. Biol. Reprod. 66, 6–13.
Frequency and occurrence of late-gestation losses from cattle cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1ymug%3D%3D&md5=6b0da1d662db71830108043fed4c0ca5CAS | 11751257PubMed |

Iager, A. E., Ragina, N. P., Ross, P. J., Beyhan, Z., Cunniff, K., Rodriguez, R. M., and Cibelli, J. B. (2008). Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos. Cloning Stem Cells 10, 371–380.
Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOmu7%2FF&md5=9cce9ffa26c485d25d376ebd64fad569CAS | 18419249PubMed |

Jones, P. L., Veenstra, G. J., Wade, P. A., Vermaak, D., Kass, S. U., Landsberger, N., Strouboulis, J., and Wolffe, A. P. (1998). Methylated DNA and MECP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19, 187–191.
Methylated DNA and MECP2 recruit histone deacetylase to repress transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXls1Cqsbg%3D&md5=f908bfbbf356426b013842de3e66d13fCAS | 9620779PubMed |

Jones, K. L., Hill, J., Shin, T. Y., Lui, L., and Westhusin, M. (2001). DNA hypomethylation of karyoplasts for bovine nuclear transplantation. Mol. Reprod. Dev. 60, 208–213.
DNA hypomethylation of karyoplasts for bovine nuclear transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslSjsrw%3D&md5=f4a44a82159c4aba0b9304cb531a1d33CAS | 11553920PubMed |

Kishigami, S., Mizutani, E., Ohta, H., Hikichi, T., Thuan, N. V., Wakayama, S., Bui, H. T., and Wakayama, T. (2006a). Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem. Biophys. Res. Commun. 340, 183–189.
Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCqtbnJ&md5=8ccacbceb58c6023ae0ba6238e26145fCAS | 16356478PubMed |

Kishigami, S., Thuan, N. V., Hikichi, T., Ohta, H., Wakayama, S., Mizutani, E., and Wakayama, T. (2006b). Epigenetic abnormalities of the mouse paternal zygotic genome associated with microinsemination of round spermatids. Dev. Biol. 289, 195–205.
Epigenetic abnormalities of the mouse paternal zygotic genome associated with microinsemination of round spermatids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlaitr7J&md5=078eec1b9780e97e6a1619ff2397aab4CAS | 16325170PubMed |

Li, X., Kato, Y., Tsuji, Y., and Tsunoda, Y. (2008). The effects of trichostatin A on mRNA expression of chromatin structure-, DNA methylation- and development-related genes in cloned mouse blastocysts. Cloning Stem Cells 10, 133–142.
The effects of trichostatin A on mRNA expression of chromatin structure-, DNA methylation- and development-related genes in cloned mouse blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislKjtL8%3D&md5=5047c105671d6bd6f8867573533ca515CAS | 18241125PubMed |

Luo, C., Lu, F., Wang, X., Wang, Z., Li, X., Gong, F., Jiang, J., Liu, Q., and Shi, D. (2013). Treatment of donor cells with trichostatin A improves in vitro development and reprogramming of buffalo (Bubalus bubalis) nucleus transfer embryos. Theriogenology 80, 878–886.
Treatment of donor cells with trichostatin A improves in vitro development and reprogramming of buffalo (Bubalus bubalis) nucleus transfer embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlyitrvK&md5=0845ed74a6ad31587d70022ae36a22cbCAS | 24007823PubMed |

Meng, Q., Polgar, Z., Liu, J., and Dinnyes, A. (2009). Live birth of somatic cell-cloned rabbits following trichostatin A treatment and co-transfer of parthenogenetic embryos. Cloning Stem Cells 11, 203–208.
Live birth of somatic cell-cloned rabbits following trichostatin A treatment and co-transfer of parthenogenetic embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Cmtb8%3D&md5=6dd7648001dbc3a7e743733902898d5aCAS | 19196041PubMed |

Nutt, L. K., Gogvadze, V., Uthaisang, W., Mirnikjoo, B., McConkey, D. J., and Orrenius, S. (2005). Indirect effects of Bax and Bak initiate the mitochondrial alterations that lead to cytochrome c release during arsenic trioxide-induced apoptosis. Cancer Biol. Ther. 4, 459–467.
Indirect effects of Bax and Bak initiate the mitochondrial alterations that lead to cytochrome c release during arsenic trioxide-induced apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xitl2rtL4%3D&md5=2069ba6a9cafc8a4d88669432bba7e50CAS | 15846091PubMed |

Rhind, S. M., King, T. J., Harkness, L. M., Bellamy, C., Wallace, W., DeSousa, P., and Wilmut, I. (2003). Cloned lambs – lessons from pathology. Nat. Biotechnol. 21, 744–745.
Cloned lambs – lessons from pathology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFert70%3D&md5=9a3aba16b9ca9f167d3cc8830a07ed32CAS | 12833090PubMed |

Santos, F., Zakhartchenko, V., Stojkovic, M., Peters, A., Jenuwein, T., Wolf, E., Reik, W., and Dean, W. (2003). Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr. Biol. 13, 1116–1121.
Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt1entrY%3D&md5=60a0ec5f68ec715c9ade6ae3fb2d58a1CAS | 12842010PubMed |

Selokar, N. L., Saini, M., Muzaffer, M., Krishnakanth, G., Saha, A. P., Chauhan, M. S., Manik, R., Palta, P., Madan, P., and Singla, S. K. (2012a). Roscovitine treatment improves synchronisation of donor cell cycle in G0/G1 stage and in vitro development of handmade cloned buffalo (Bubalus bubalis) embryos. Cell. Reprogram. 14, 146–154.
| 1:CAS:528:DC%2BC38XlsFSnu78%3D&md5=e4adcbdd730079a65635b03f8cb9129bCAS | 22372577PubMed |

Selokar, N. L., Shah, R. A., Saha, A. P., Muzaffar, M., Saini, M., Chauhan, M. S., Manik, R. S., Palta, P., and Singla, S. K. (2012b). Effect of post-fusion holding time, orientation and position of somatic cell cytoplasts during electrofusion on the development of handmade cloned embryos in buffalo (Bubalus bubalis). Theriogenology 78, 930–936.
Effect of post-fusion holding time, orientation and position of somatic cell cytoplasts during electrofusion on the development of handmade cloned embryos in buffalo (Bubalus bubalis).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38roslKmsw%3D%3D&md5=3bc0ab7f21e377169c68e1fcbe0ebbc9CAS | 22541327PubMed |

Selokar, N. L., Saini, M., Palta, P., Chauhan, M. S., Manik, R. S., and Singla, S. K. (2014). Hope for restoration of dead valuable bulls through cloning using donor somatic cells isolated from cryopreserved semen. PloS One , .
Hope for restoration of dead valuable bulls through cloning using donor somatic cells isolated from cryopreserved semen.Crossref | GoogleScholarGoogle Scholar | 24614586PubMed |

Shah, R. A., George, A., Singh, M. K., Kumar, D., Chauhan, M. S., Manik, R. S., Palta, P., and Singla, S. K. (2008). Hand-made cloned buffalo (Bubalus bubalis) embryos: comparison of different media and culture systems. Cloning Stem Cells 10, 435–442.
Hand-made cloned buffalo (Bubalus bubalis) embryos: comparison of different media and culture systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGhtbnP&md5=3530a6afa71906c404a2afb3754aaaf9CAS | 18800862PubMed |

Shah, R. A., George, A., Singh, M. K., Kumar, D., Anand, T., Chauhan, M. S., Manik, R. S., Palta, P., and Singla, S. K. (2009). Pregnancies established from handmade cloned blastocysts reconstructed using skin fibroblasts in buffalo (Bubalus bubalis). Theriogenology 71, 1215–1219.
Pregnancies established from handmade cloned blastocysts reconstructed using skin fibroblasts in buffalo (Bubalus bubalis).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M3mtVCgsQ%3D%3D&md5=f8f99968c5c223602dba0abb37f85a07CAS | 19168209PubMed |

Shi, D., Lu, F., Wei, Y., Cui, K., Yang, S., Wei, J., and Liu, Q. (2007). Buffalos (Bubalus bubalis) cloned by nuclear transfer of somatic cells. Biol. Reprod. 77, 285–291.
Buffalos (Bubalus bubalis) cloned by nuclear transfer of somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot12gt7s%3D&md5=919e1d2ed4fa32e47f556d8933cbfde7CAS | 17475931PubMed |

Sirisha, K., Selokar, N. L., Saini, M., Chauhan, M. S., Manik, R. S., and Singla, S. K. (2013). Cryopreservation of zona-free cloned buffalo (Bubalis bubalis) embryos: slow freezing vs open pulled-straw vitrification. Reprod. Domest. Anim. 48, 538–544.
Cryopreservation of zona-free cloned buffalo (Bubalis bubalis) embryos: slow freezing vs open pulled-straw vitrification.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s3mtVymtg%3D%3D&md5=fb99d73868e6b9e08ddfdec03cc5b69aCAS | 23281817PubMed |

Wang, Y., Su, J., Wang, L., Xu, W., Quan, F., Liu, J., and Zhang, Y. (2011). The effects of 5-aza-2′-deoxycytidine and trichostatin A on gene expression and DNA methylation status in cloned bovine blastocysts. Cell. Reprogram. 13, 297–306.
The effects of 5-aza-2′-deoxycytidine and trichostatin A on gene expression and DNA methylation status in cloned bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOqurzN&md5=9147bb8b4d0b0d3725f878a3bc6ea628CAS | 21486115PubMed |

Wee, G., Shim, J. J., Koo, D. B., Chae, J. I., Lee, K. K., and Han, Y. M. (2007). Epigenetic alteration of the donor cells does not recapitulate the reprogramming of DNA methylation in cloned embryos. Reproduction 134, 781–787.
Epigenetic alteration of the donor cells does not recapitulate the reprogramming of DNA methylation in cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1ehtw%3D%3D&md5=52b630f52bd50064c7f5e72fa0136ab4CAS | 18042635PubMed |

Xiong, Y., Dowdy, S. C., Podratz, K. C., Jin, F., Attewell, J. R., Eberhardt, N. L., and Jiang, S. W. (2005). Histone deacetylase inhibitors decrease DNA methyltransferase-3B messenger RNA stability and down-regulate de novo DNA methyltransferase activity in human endometrial cells. Cancer Res. 65, 2684–2689.
Histone deacetylase inhibitors decrease DNA methyltransferase-3B messenger RNA stability and down-regulate de novo DNA methyltransferase activity in human endometrial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVeqsLk%3D&md5=4bd73ff3b96d9c687dcb1e3526c2c82eCAS | 15805266PubMed |

Yang, X., Smith, S. L., Tian, X. C., Lewin, H. A., Renard, J. P., and Wakayama, T. (2007). Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat. Genet. 39, 295–302.
Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVOktro%3D&md5=b2f6ec0c032969a80432c466eb537022CAS | 17325680PubMed |

Yoshida, M., Kijima, M., Akita, M., and Beppu, T. (1990). Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265, 17 174–17 179.
| 1:CAS:528:DyaK3cXlvVyqsrY%3D&md5=3bfd0a29a004dab6f5ef1e0fff1da566CAS |

Young, L. E., Sinclair, K. D., and Wilmut, I. (1998). Large offspring syndrome in cattle and sheep. Rev. Reprod. 3, 155–163.
Large offspring syndrome in cattle and sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlaltL8%3D&md5=786b15da787172bc7519c08d2e03b7b5CAS | 9829550PubMed |

Yu, Y., Ding, C., Wang, E., Chen, X., Li, X., Zhao, C., Fan, Y., Wang, L., Beaujean, N., Zhou, Q., Jouneau, A., and Ji, W. (2007). Piezo-assisted nuclear transfer affects cloning efficiency and may cause apoptosis. Reproduction 133, 947–954.
Piezo-assisted nuclear transfer affects cloning efficiency and may cause apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlGnu7g%3D&md5=b91717dd040c9efcbf48fa7ed5f1f001CAS | 17616724PubMed |

Zhou, Q., Baquir, S., Brochard, V., Smith, L. C., and Renard, J. P. (2002). Donor nuclei are not well reprogrammed by nuclear transfer procedure. Biol. Reprod. 66, 237–238.