Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE (Open Access)

Selection of reference genes for quantitative real-time polymerase chain reaction in porcine embryos

Won-Jae Lee A B , Si-Jung Jang A , Seung-Chan Lee A , Ji-Sung Park A , Ryoung-Hoon Jeon A , Raghavendra Baregundi Subbarao A , Dinesh Bharti A , Jeong-Kyu Shin C , Bong-Wook Park D and Gyu-Jin Rho A E F
+ Author Affiliations
- Author Affiliations

A Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju 660-701, Republic of Korea.

B PWG Genetics Pvt. Ltd, 15 Tech Park Crescent, 638117, Singapore.

C Department of Obstetrics and Gynecology, School of Medicine and Institute of Health Science, Gyeongsang National University, Jinju 660-701, Republic of Korea.

D Department of Oral and Maxillofacial Surgery, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea.

E Research Institute of Life Sciences, Gyeongsang National University, 501, Jinju-daero, Jinju 660-701, Republic of Korea.

F Corresponding author. Email: jinrho@gnu.ac.kr

*These authors contributed equally to this work.

Reproduction, Fertility and Development 29(2) 357-367 https://doi.org/10.1071/RD14393
Submitted: 15 October 2014  Accepted: 14 July 2015   Published: 21 August 2015

Journal Compilation © CSIRO Publishing 2017 Open Access CC BY-NC-ND

Abstract

To study gene expression and to determine distinctive characteristics of embryos produced by different methods, normalisation of the gene(s) of interest against reference gene(s) has commonly been employed. Therefore, the present study aimed to assess which reference genes tend to express more stably in single porcine blastocysts produced in vivo (IVO) or by parthenogenetic activation (PA), in vitro fertilisation (IVF) and somatic cell nuclear transfer (SCNT) using different analysis programs, namely geNorm, Normfinder and Bestkeeper. Commonly used reference genes including 18S rRNA (18S), H2A histone family, member Z (H2A), hypoxanthine phosphoribosyltransferase1 (HPRT1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), ribosomal protein 4 (RPL4), peptidylprolyl isomerase A (PPIA), beta actin (ACTB), succinate dehydrogenase complex, subunit A (SDHA) and hydroxymethylbilane synthase (HMBS2) were analysed; most of them resulted in significantly (P < 0.05) different cycle threshold (CT) values in porcine embryos except for SDHA and H2A. In evaluation of stable reference genes across in vivo and in vitro porcine blastocysts, three kinds of programs showed slightly different results; however, there were similar patterns about the rankings of more or less stability overall. In conclusion, SDHA and H2A were determined as the most appropriate reference genes for reliable normalisation in order to find the comparative gene expression in porcine blastocysts produced by different methods, whereas 18S was regarded as a less-stable reference gene. The present study has evaluated the stability of commonly used reference genes for accurate normalisation in porcine embryos to obtain reliable results.

Additional keywords: single blastocyst, normalisation, qRT-PCR.


References

Andersen, C. L., Jensen, J. L., and Ørntoft, T. F. (2004). Normalisation of real-time quantitative reverse-transcription PCR data: a model-based variance estimation approach to identify genes suited for normalisation, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245–5250.
Normalisation of real-time quantitative reverse-transcription PCR data: a model-based variance estimation approach to identify genes suited for normalisation, applied to bladder and colon cancer data sets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtF2mtbg%3D&md5=21f0e7dbbe80b169de8977b03b8c2a3bCAS | 15289330PubMed |

Arya, M., Shergill, I. S., Williamson, M., Gommersall, L., Arya, N., and Patel, H. R. (2005). Basic principles of real-time quantitative PCR. Expert Rev. Mol. Diagn. 5, 209–219.
Basic principles of real-time quantitative PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1Kmu7c%3D&md5=04eebd9ff636567650e73f340f2d29d6CAS | 15833050PubMed |

Bas, A., Forsberg, G., Hammarström, S., and Hammarström, M. L. (2004). Utility of the housekeeping genes 18S rRNA, beta-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalisation in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes. Scand. J. Immunol. 59, 566–573.
Utility of the housekeeping genes 18S rRNA, beta-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalisation in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsF2qsb0%3D&md5=614b5ac9a16565be83d12bc0ac990f83CAS | 15182252PubMed |

Bettegowda, A., Patel, O. V., Ireland, J. J., and Smith, G. W. (2006). Quantitative analysis of messenger RNA abundance for ribosomal protein L-15, cyclophilin-A, phosphoglycerokinase, beta-glucuronidase, glyceraldehyde 3-phosphate dehydrogenase, beta-actin and histone H2A during bovine oocyte maturation and early embryogenesis in vitro. Mol. Reprod. Dev. 73, 267–278.
Quantitative analysis of messenger RNA abundance for ribosomal protein L-15, cyclophilin-A, phosphoglycerokinase, beta-glucuronidase, glyceraldehyde 3-phosphate dehydrogenase, beta-actin and histone H2A during bovine oocyte maturation and early embryogenesis in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVKht78%3D&md5=dd6d97f2ba2aeeedeb76fc5db1a6a994CAS | 16261607PubMed |

Beyhan, Z., Forsberg, E. J., Eilertsen, K. J., Kent-First, M., and First, N. L. (2007). Gene expression in bovine nuclear transfer embryos in relation to donor cell efficiency in producing live offspring. Mol. Reprod. Dev. 74, 18–27.
Gene expression in bovine nuclear transfer embryos in relation to donor cell efficiency in producing live offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yjsb%2FJ&md5=c49b5641b5338021310a0ffb2247c384CAS | 16941691PubMed |

Bustin, S. A. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol. 29, 23–39.
Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvFOhu7s%3D&md5=18aa0a1d85b90082336be1eaf096aa50CAS | 12200227PubMed |

Butte, A. J., Dzau, V. J., and Glueck, S. B. (2001). Further defining housekeeping, or “maintenance” genes. Focus on “a compendium of gene expression in normal human tissues”. Physiol. Genomics 7, 95–96.
| 1:CAS:528:DC%2BD38XhtFagsLo%3D&md5=892c395e979a77bfc8964fa7bc8417b2CAS | 11773595PubMed |

Davoren, P. A., McNeill, R. E., Lowery, A. J., Kerin, M. J., and Miller, N. (2008). Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer. BMC Mol. Biol. 9, 76.
Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer.Crossref | GoogleScholarGoogle Scholar | 18718003PubMed |

Deshmukh, R. S., Østrup, O., Østrup, E., Vejlsted, M., Niemann, H., Lucas-Hahn, A., Petersen, B., Li, J., Callesen, H., and Hyttel, P. (2011). DNA methylation in porcine pre-implantation embryos developed in vivo and produced by in vitro fertilisation, parthenogenetic activation and somatic cell nuclear transfer. Epigenetics 6, 177–187.
DNA methylation in porcine pre-implantation embryos developed in vivo and produced by in vitro fertilisation, parthenogenetic activation and somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs12ksLY%3D&md5=7f6332ef229ed49e4350ab26c9fc021dCAS | 20935454PubMed |

Dheda, K., Huggett, J. F., Bustin, S. A., Johnson, M. A., Rook, G., and Zumla, A. (2004). Validation of housekeeping genes for normalising RNA expression in real-time PCR. Biotechniques 37, 112–114, 116, 118–119.
| 1:CAS:528:DC%2BD2cXlvVagtrg%3D&md5=00a8dddbec28456169416f1210469a2fCAS | 15283208PubMed |

du Puy, L., Lopes, S. M., Haagsman, H. P., and Roelen, B. A. (2011). Analysis of co-expression of OCT4, NANOG and SOX2 in pluripotent cells of the porcine embryo, in vivo and in vitro. Theriogenology 75, 513–526.
Analysis of co-expression of OCT4, NANOG and SOX2 in pluripotent cells of the porcine embryo, in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Kmsw%3D%3D&md5=a0939d8f4bf2b8afc0994b1bde2837f4CAS | 21074831PubMed |

Fink, L., Seeger, W., Ermert, L., Hanze, J., Stahl, U., Grimminger, F., Kummer, W., and Bohle, R. M. (1998). Real-time quantitative RT-PCR after laser-assisted cell picking. Nat. Med. 4, 1329–1333.
Real-time quantitative RT-PCR after laser-assisted cell picking.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlaru7s%3D&md5=b3c00dd6c9658f5f4aa0532b144351d7CAS | 9809560PubMed |

Goossens, K., Van Poucke, M., Van Soom, A., Vandesompele, J., Van Zeveren, A., and Peelman, L. J. (2005). Selection of reference genes for quantitative real-time PCR in bovine pre-implantation embryos. BMC Dev. Biol. 5, 27.
Selection of reference genes for quantitative real-time PCR in bovine pre-implantation embryos.Crossref | GoogleScholarGoogle Scholar | 16324220PubMed |

Gu, Y., Shen, X., Zhou, D., Wang, Z., Zhang, N., Shan, Z., Jin, L., and Lei, L. (2014). Selection and expression profiles of reference genes in mouse pre-implantation embryos of different ploidies at various developmental stages. PLoS One 9, e98956.
Selection and expression profiles of reference genes in mouse pre-implantation embryos of different ploidies at various developmental stages.Crossref | GoogleScholarGoogle Scholar | 24927500PubMed |

Haller, F., Kulle, B., Schwager, S., Gunawan, B., von Heydebreck, A., Sültmann, H., and Füzesi, L. (2004). Equivalence test in quantitative reverse transcription polymerase chain reaction: confirmation of reference genes suitable for normalisation. Anal. Biochem. 335, 1–9.
Equivalence test in quantitative reverse transcription polymerase chain reaction: confirmation of reference genes suitable for normalisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1Sqt74%3D&md5=327daf08decbc0e47dee3cb630d2987cCAS | 15519565PubMed |

Huggett, J., Dheda, K., Bustin, S., and Zumla, A. (2005). Real-time RT-PCR normalisation: strategies and considerations. Genes Immun. 6, 279–284.
Real-time RT-PCR normalisation: strategies and considerations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Gmtrs%3D&md5=f4bb44b857e6f231b18f69ca22ef5253CAS | 15815687PubMed |

Jeong, Y. J., Choi, H. W., Shin, H. S., Cui, X. S., Kim, N. H., Gerton, G. L., and Jun, J. H. (2005). Optimisation of real time RT-PCR methods for the analysis of gene expression in mouse eggs and pre-implantation embryos. Mol. Reprod. Dev. 71, 284–289.
Optimisation of real time RT-PCR methods for the analysis of gene expression in mouse eggs and pre-implantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFyiu7c%3D&md5=16032da79708595290d9f5105db0a92cCAS | 15806558PubMed |

Kuijk, E. W., du Puy, L., van Tol, H. T., Haagsman, H. P., Colenbrander, B., and Roelen, B. A. (2007). Validation of reference genes for quantitative RT-PCR studies in porcine oocytes and pre-implantation embryos. BMC Dev. Biol. 7, 58.
Validation of reference genes for quantitative RT-PCR studies in porcine oocytes and pre-implantation embryos.Crossref | GoogleScholarGoogle Scholar | 17540017PubMed |

Kumar, B. M., Jin, H. F., Kim, J. G., Ock, S. A., Hong, Y., Balasubramanian, S., Choe, S. Y., and Rho, G. J. (2007). Differential gene expression patterns in porcine nuclear transfer embryos reconstructed with fetal fibroblasts and mesenchymal stem cells. Dev. Dyn. 236, 435–446.
Differential gene expression patterns in porcine nuclear transfer embryos reconstructed with fetal fibroblasts and mesenchymal stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisFamt70%3D&md5=77b9122e6729998163d970ead529659aCAS | 17191234PubMed |

Kumar, B. M., Maeng, G. H., Jeon, R. H., Lee, Y. M., Lee, W. J., Jeon, B. G., Ock, S. A., and Rho, G. J. (2012). Developmental expression of lineage-specific genes in porcine embryos of different origins. J. Assist. Reprod. Genet. 29, 723–733.
Developmental expression of lineage-specific genes in porcine embryos of different origins.Crossref | GoogleScholarGoogle Scholar | 22639061PubMed |

Kumar, B. M., Maeng, G. H., Lee, Y. M., Lee, J. H., Jeon, B. G., Ock, S. A., Kang, T., and Rho, G. J. (2013). Epigenetic modification of fetal fibroblasts improves developmental competency and gene expression in porcine cloned embryos. Vet. Res. Commun. 37, 19–28.
Epigenetic modification of fetal fibroblasts improves developmental competency and gene expression in porcine cloned embryos.Crossref | GoogleScholarGoogle Scholar | 23065456PubMed |

Lazzari, G., Wrenzycki, C., Herrmann, D., Duchi, R., Kruip, T., Niemann, H., and Galli, C. (2002). Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome. Biol. Reprod. 67, 767–775.
Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsV2js7Y%3D&md5=596f0bd100ff38f31be18a66075c17bfCAS | 12193383PubMed |

Lee, J. H., Lee, W. J., Jeon, R. H., Lee, Y. M., Jang, S. J., Lee, S. L., Jeon, B. G., Ock, S. A., King, W. A., and Rho, G. J. (2014). Development and gene expression of porcine cloned embryos derived from bone marrow stem cells with overexpressing Oct4 and Sox2. Cell. Reprogram. 16, 428–438.
Development and gene expression of porcine cloned embryos derived from bone marrow stem cells with overexpressing Oct4 and Sox2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvF2lur3K&md5=7156ec9562a9be588891f451ce1778cbCAS | 25437870PubMed |

Lee, W. J., Jeon, R. H., Jang, S. J., Park, J. S., Lee, S. C., Baregundi Subbarao, R., Lee, S. L., Park, B. W., King, W. A., and Rho, G. J. (2015). Selection of reference genes for quantitative gene expression in porcine mesenchymal stem cells derived from various sources along with differentiation into multi-lineages. Stem Cells Int. 2015, 235192.
Selection of reference genes for quantitative gene expression in porcine mesenchymal stem cells derived from various sources along with differentiation into multi-lineages.Crossref | GoogleScholarGoogle Scholar | 25972899PubMed |

Llobat, L., Marco-Jiménez, F., Peñaranda, D. S., Saenz-de-Juano, M. D., and Vicente, J. S. (2012). Effect of embryonic genotype on reference gene selection for RT-qPCR normalisation. Reprod. Domest. Anim. 47, 629–634.
Effect of embryonic genotype on reference gene selection for RT-qPCR normalisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVKjurvO&md5=3dc8a1386b1f9d00dfb6f8210b6bee50CAS | 22044783PubMed |

Luchsinger, C., Arias, M. E., Vargas, T., Paredes, M., Sánchez, R., and Felmer, R. (2014). Stability of reference genes for normalisation of reverse transcription quantitative real-time PCR (RT-qPCR) data in bovine blastocysts produced by IVF, ICSI and SCNT. Zygote 22, 505–512.
Stability of reference genes for normalisation of reverse transcription quantitative real-time PCR (RT-qPCR) data in bovine blastocysts produced by IVF, ICSI and SCNT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1WisbvE&md5=7a906d2da8dd69f9a3c90eebce1ed1cbCAS | 23731783PubMed |

Magnani, L., and Cabot, R. A. (2008). In vitro- and in vivo-derived porcine embryos possess similar, but not identical, patterns of Oct4, Nanog and Sox2 mRNA expression during cleavage development. Mol. Reprod. Dev. 75, 1726–1735.
In vitro- and in vivo-derived porcine embryos possess similar, but not identical, patterns of Oct4, Nanog and Sox2 mRNA expression during cleavage development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyqsrzN&md5=69be01962ccbaed83f949ec7e47dee5aCAS | 18425776PubMed |

Mamo, S., Gal, A. B., Bodo, S., and Dinnyes, A. (2007). Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro. BMC Dev. Biol. 7, 14.
Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 17341302PubMed |

Mamo, S., Gal, A. B., Polgar, Z., and Dinnyes, A. (2008). Expression profiles of the pluripotency marker gene POU5F1 and validation of reference genes in rabbit oocytes and pre-implantation stage embryos. BMC Mol. Biol. 9, 67.
Expression profiles of the pluripotency marker gene POU5F1 and validation of reference genes in rabbit oocytes and pre-implantation stage embryos.Crossref | GoogleScholarGoogle Scholar | 18662377PubMed |

McCulloch, R. S., Ashwell, M. S., O’Nan, A. T., and Mente, P. L. (2012). Identification of stable normalisation genes for quantitative real-time PCR in porcine articular cartilage. J. Anim. Sci. Biotechnol. 3, 36.
Identification of stable normalisation genes for quantitative real-time PCR in porcine articular cartilage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXivFGks7Y%3D&md5=d194020fc8dcd8140adc9530032c70c6CAS | 23146128PubMed |

McElroy, S. L., Kim, J. H., Kim, S., Jeong, Y. W., Lee, E. G., Park, S. M., Hossein, M. S., Koo, O. J., Abul Hashem, M. D., Jang, G., Kang, S. K., Lee, B. C., and Hwang, W. S. (2008). Effects of culture conditions and nuclear transfer protocols on blastocyst formation and mRNA expression in pre-implantation porcine embryos. Theriogenology 69, 416–425.
Effects of culture conditions and nuclear transfer protocols on blastocyst formation and mRNA expression in pre-implantation porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVSmsro%3D&md5=ba46e4eddaf30c0425b215575aac1babCAS | 18055008PubMed |

Nailis, H., Coenye, T., Van Nieuwerburgh, F., Deforce, D., and Nelis, H. J. (2006). Development and evaluation of different normalisation strategies for gene expression studies in Candida albicans biofilms by real-time PCR. BMC Mol. Biol. 7, 25.
Development and evaluation of different normalisation strategies for gene expression studies in Candida albicans biofilms by real-time PCR.Crossref | GoogleScholarGoogle Scholar | 16889665PubMed |

Niemann, H., and Wrenzycki, C. (2000). Alterations of expression of developmentally important genes in pre-implantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology 53, 21–34.
Alterations of expression of developmentally important genes in pre-implantation bovine embryos by in vitro culture conditions: implications for subsequent development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvVyqug%3D%3D&md5=e4b2eb879d9d29d3cb3c378096ea5b3fCAS | 10735059PubMed |

Nygard, A. B., Jørgensen, C. B., Cirera, S., and Fredholm, M. (2007). Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol. Biol. 8, 67.
Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR.Crossref | GoogleScholarGoogle Scholar | 17697375PubMed |

Paris, D. B., Kuijk, E. W., Roelen, B. A., and Stout, T. A. (2011). Establishing reference genes for use in real-time quantitative PCR analysis of early equine embryos. Reprod. Fertil. Dev. 23, 353–363.
Establishing reference genes for use in real-time quantitative PCR analysis of early equine embryos.Crossref | GoogleScholarGoogle Scholar | 21211469PubMed |

Pfaffl, M. W., Tichopad, A., Prgomet, C., and Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26, 509–515.
Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvF2mtLk%3D&md5=2dca329043b816f75670dae0aa22729dCAS | 15127793PubMed |

Radonić, A., Thulke, S., Mackay, I. M., Landt, O., Siegert, W., and Nitsche, A. (2004). Guideline to reference gene selection for quantitative real-time PCR. Biochem. Biophys. Res. Commun. 313, 856–862.
Guideline to reference gene selection for quantitative real-time PCR.Crossref | GoogleScholarGoogle Scholar | 14706621PubMed |

Rinaudo, P., and Schultz, R. M. (2004). Effects of embryo culture on global pattern of gene expression in pre-implantation mouse embryos. Reproduction 128, 301–311.
Effects of embryo culture on global pattern of gene expression in pre-implantation mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot1KitLg%3D&md5=fef5c0d364691265319f364b0b5e7516CAS | 15333781PubMed |

Rizos, D., Lonergan, P., Boland, M. P., Arroyo-García, R., Pintado, B., de la Fuente, J., and Gutiérrez-Adán, A. (2002). Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: implications for blastocyst quality. Biol. Reprod. 66, 589–595.
Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: implications for blastocyst quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVeitLo%3D&md5=f1e8ff9c4886ecc0210ffa3997126194CAS | 11870062PubMed |

Robert, C., McGraw, S., Massicotte, L., Pravetoni, M., Gandolfi, F., and Sirard, M. A. (2002). Quantification of housekeeping transcript levels during the development of bovine pre-implantation embryos. Biol. Reprod. 67, 1465–1472.
Quantification of housekeeping transcript levels during the development of bovine pre-implantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1Kjs78%3D&md5=343e500481c0ae49f0b3250f2ecb6034CAS | 12390877PubMed |

Ross, P. J., Wang, K., Kocabas, A., and Cibelli, J. B. (2010). Housekeeping gene transcript abundance in bovine fertilised and cloned embryos. Cell. Reprogram. 12, 709–717.
Housekeeping gene transcript abundance in bovine fertilised and cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFygsLrK&md5=0396fcf84cc45b093a81ca7572bf9b12CAS | 20973679PubMed |

Smits, K., Goosens, K., Soom, A. V., Govaere, J., Hoogevijs, M., Vanhaesebrouck, E., Galli, C., Colleoni, S., Vandesompele, M., and Peelman, L. (2009). Selection of reference genes for quantitative real-time PCR in equine in vivo and fresh and frozen–thawed in vitro blastocysts. BMC Res. Notes 2, 246.
Selection of reference genes for quantitative real-time PCR in equine in vivo and fresh and frozen–thawed in vitro blastocysts.Crossref | GoogleScholarGoogle Scholar | 20003356PubMed |

Somers, J., Smith, C., Donnison, M., Wells, D. N., Henderson, H., McLeay, L., and Pfeffer, P. L. (2006). Gene expression profiling of individual bovine nuclear transfer blastocysts. Reproduction 131, 1073–1084.
Gene expression profiling of individual bovine nuclear transfer blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1ehur0%3D&md5=0df3091d630af199e6f6c4f84715165aCAS | 16735546PubMed |

Suzuki, T., Kondo, S., Wakayama, T., Cizdziel, P. E., and Hayashizaki, Y. (2008). Genome-wide analysis of abnormal H3K9 acetylation in cloned mice. PLoS One 3, e1905.
Genome-wide analysis of abnormal H3K9 acetylation in cloned mice.Crossref | GoogleScholarGoogle Scholar | 18398451PubMed |

Thellin, O., Zorzi, W., Lakaye, B., De Borman, B., Coumans, B., Hennen, G., Grisar, T., Igout, A., and Heinen, E. (1999). Housekeeping genes as internal standards: use and limits. J. Biotechnol. 75, 291–295.
Housekeeping genes as internal standards: use and limits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsFajt74%3D&md5=f0f997f5c32cdcbca0e2d0a1cc651eb0CAS | 10617337PubMed |

Tricarico, C., Pinzani, P., Bianchi, S., Paglierani, M., Distante, V., Pazzagli, M., Bustin, S. A., and Orlando, C. (2002). Quantitative real-time reverse transcription polymerase chain reaction: normalisation to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal. Biochem. 309, 293–300.
Quantitative real-time reverse transcription polymerase chain reaction: normalisation to rRNA or single housekeeping genes is inappropriate for human tissue biopsies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xot1Kmu7s%3D&md5=12d1086a35a3a539ce32aaed2dc8a0f5CAS | 12413463PubMed |

Uddin, M. J., Cinar, M. U., Tesfaye, D., Looft, C., Tholen, E., and Schellander, K. (2011). Age-related changes in relative expression stability of commonly used housekeeping genes in selected porcine tissues. BMC Res. Notes 4, 441.
Age-related changes in relative expression stability of commonly used housekeeping genes in selected porcine tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsV2ltb7N&md5=ad1c628cd5c985535c716212f6338cdaCAS | 22023805PubMed |

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002). Accurate normalisation of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034–research0034.11.
Accurate normalisation of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.Crossref | GoogleScholarGoogle Scholar | 12184808PubMed |

Veazey, K. J., and Golding, M. C. (2011). Selection of stable reference genes for quantitative RT-PCR comparison of mouse embryonic and extra-embryonic stem cells. PLoS One 6, e27592.
Selection of stable reference genes for quantitative RT-PCR comparison of mouse embryonic and extra-embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFyntLbO&md5=b75919c682a02aa7a73f0e7cf5665905CAS | 22102912PubMed |

Walker, N. J. (2002). Tech.Sight. A technique whose time has come. Science 296, 557–559.
Tech.Sight. A technique whose time has come.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFCjt7s%3D&md5=b116e13ec59c3a34de047141509935fdCAS | 11964485PubMed |

Yang, F., Lei, X., Palacios, R. R., Tang, C., and Yue, H. (2013). Selection of reference gene for quantitative real-time PCR analysis in chicken embryo fibroblasts infected with avian leucosis virus subgroup J. BMC Res. Notes 6, 402.
Selection of reference gene for quantitative real-time PCR analysis in chicken embryo fibroblasts infected with avian leucosis virus subgroup J.Crossref | GoogleScholarGoogle Scholar | 24099561PubMed |

Zhao, J., Whyte, J., and Prather, R. S. (2010). Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer. Cell Tissue Res. 341, 13–21.
Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 20563602PubMed |

Zhou, W., Xiang, T., Walker, S., Farrar, V., Hwang, E., Findeisen, B., Sadeghieh, S., Arenivas, F., Abruzzese, R. V., and Polejaeva, I. (2008). Global gene expression analysis of bovine blastocysts produced by multiple methods. Mol. Reprod. Dev. 75, 744–758.
Global gene expression analysis of bovine blastocysts produced by multiple methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktFGhsb8%3D&md5=c5360ccf94d334f84489096bbe432ca8CAS | 17886272PubMed |