Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Oestrogenic action of neonatal tamoxifen on the hypothalamus and reproductive system in female mice

Rahmatollah Parandin A , Morteza Behnam-Rassouli A B and Nasser Mahdavi-Shahri A
+ Author Affiliations
- Author Affiliations

A Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, PO Box 91775-1436, Mashhad 9177948974, Iran.

B Corresponding author. Email: behnam@um.ac.ir

Reproduction, Fertility and Development 29(5) 1012-1020 https://doi.org/10.1071/RD15361
Submitted: 5 September 2015  Accepted: 29 January 2016   Published: 11 April 2016

Abstract

Tamoxifen, a selective oestrogen receptor modulator, is widely used for both the treatment and prevention of breast cancer in women; however, it is known to have adverse effects in the female reproductive system. Growing evidence suggests that oestrogen-sensitive neuron populations of the anteroventral periventricular (AVPV) nucleus and arcuate (ARC) nucleus, especially kisspeptin neurons, play a pivotal role in the timing of puberty onset and reproductive function. The aim of the present study was to evaluate whether neonatal exposure to tamoxifen affects oestrogenic actions in the brain and reproductive function in mice. On 1 to 5 postnatal days, female pups were injected subcutaneously with sesame oil (sham), oestradiol benzoate (EB; 20 µg kg–1), tamoxifen (0.4 mg kg–1) or EB+tamoxifen. Control mice received no treatment. Mice in the EB, tamoxifen and tamoxifen+EB groups exhibited advanced vaginal opening, disrupted oestrous cycles and a decreased follicular pool. Conversely, in these groups, there was a reduction in kisspeptin (Kiss1) mRNA expression, the neuronal density of AVPV and ARC nuclei and LH and oestradiol concentrations in the serum. The results of the present study confirm oestrogenic actions of tamoxifen in the brain and reproductive system. In addition, we show, for the first time, that tamoxifen has oestrogenic effects on the oestrogen-sensitive hypothalamic AVPV and ARC nuclei controlling the reproductive axis in female mice.

Additional keywords: neuroendocrinology, oestrogen, oestrous, ovary.


References

Bateman, H. L., and Patisaul, H. B. (2008). Disrupted female reproductive physiology following neonatal exposure to phytooestrogens or oestrogen specific ligands is associated with decreased GnRH activation and kisspeptin fiber density in the hypothalamus. Neurotoxicology 29, 988–997.
Disrupted female reproductive physiology following neonatal exposure to phytooestrogens or oestrogen specific ligands is associated with decreased GnRH activation and kisspeptin fiber density in the hypothalamus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWrtr3F&md5=5d2478bcb2f844d242c818aaffe28624CAS | 18656497PubMed |

Butcher, R. L., and Kirkpatric-Keller, D. (1984). Pattern of follicular growth during the four-day oestrus cycle in the rat. Biol. Reprod. 31, 280–286.
Pattern of follicular growth during the four-day oestrus cycle in the rat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M%2FgtVOhtw%3D%3D&md5=be17999dfa41acb062fe30d525fcd6feCAS | 6541062PubMed |

Caligioni, C. S. (2009). Assessing reproductive status/stages in mice. Curr. Protoc. Neurosci. Appendix 4, Appendix 4I.
Assessing reproductive status/stages in mice.Crossref | GoogleScholarGoogle Scholar | 19575469PubMed |

Cao, J., and Patisaul, H. B. (2011). Sexually dimorphic expression of hypothalamic oestrogen receptors α and β and Kiss1 in neonatal male and female rats. J. Comp. Neurol. 519, 2954–2977.
Sexually dimorphic expression of hypothalamic oestrogen receptors α and β and Kiss1 in neonatal male and female rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVWhtbvN&md5=5f34c8417b534a058f546d86ed0c1f56CAS | 21484804PubMed |

Clarkson, J. (2013). Effects of estradiol on kisspeptin neurons during puberty. Front. Neuroendocrinol. 34, 120–131.
Effects of estradiol on kisspeptin neurons during puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkvF2lt70%3D&md5=f636a5f4261943c1449b9bc7763b7980CAS | 23500175PubMed |

Coggeshall, R. E. (1992). A consideration of neural counting methods. Trends Neurosci. 15, 9–13.
A consideration of neural counting methods.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK383mtlGgsg%3D%3D&md5=1a0847ce5cfa140d2450a304485783a4CAS | 1374957PubMed |

d’Anglemont de Tassigny, X., and Colledge, W. H. (2010). The role of kisspeptin signaling in reproduction. Physiology (Bethesda) 25, 207–217.
The role of kisspeptin signaling in reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGms7vM&md5=1e44cd6dd339cf47b0a32f2c83889f9eCAS | 20699467PubMed |

Eldridge, J. C., and Stevens, J. T. (2010). ‘Endocrine Toxicology.’ 3rd edn. (Informa Healthcare: New York.)

Fisher, B., Costantino, J., Redmond, C., Poisson, R., Bowman, D., Couture, J., Dimitrov, N. V., Wolmark, N., Wickerham, D. L., Fisher, E. R., et al. (1989). A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have oestrogen-receptor-positive tumors. N. Engl. J. Med. 320, 479–484.
A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have oestrogen-receptor-positive tumors.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M7islChsw%3D%3D&md5=7e648a41a6ce5659948b541725bd41b6CAS | 2644532PubMed |

Foster, P. M., and McIntyre, B. S. (2002). Endocrine active agents: implications of adverse and non-adverse changes. Toxicol. Pathol. 30, 59–65.
Endocrine active agents: implications of adverse and non-adverse changes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XislOntro%3D&md5=7404bcb785fc69b2a02e4593bdb9f6d8CAS | 11892727PubMed |

Fox, J. G., Davisson, M. T., Quimby, F. W., Barthold, S. W., Newcomer, C. E., and Smith, A. L. (2007). ‘The Mouse in Biomedical Research: Normative Biology, Husbandry, and Models.’ 2nd edn. (Academic Press, New York.)

Franklin, K. B. J., and Paxinos, G. (2001). ‘The Mouse Brain in Stereotaxic Coordinates.’ (Academic Press, San Diego.)

Gillies, G. E., and McArthur, S. (2010). Oestrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol. Rev. 62, 155–198.
Oestrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSltbnL&md5=6fc1b92336d7fa3d1495982a67c5ed88CAS | 20392807PubMed |

Hall, J. M., and McDonnell, D. P. (1999). The oestrogen receptor beta-isoform (ERbeta) of the human oestrogen receptor modulates ERalpha transcriptional activity and is a key regulator of the cellular response to oestrogens and antioestrogens. Endocrinology 140, 5566–5578.
| 1:CAS:528:DyaK1MXns12htro%3D&md5=e5d01213e753e6f87fb1a0198292d9ccCAS | 10579320PubMed |

Hamm, M. L., Bhat, G. K., Thompson, W. E., and Mann, D. R. (2004). Folliculogenesis is impaired and granulosa cell apoptosis is increased in leptin-deficient mice. Biol. Reprod. 71, 66–72.
Folliculogenesis is impaired and granulosa cell apoptosis is increased in leptin-deficient mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFKktLc%3D&md5=07448092c22a144b3d6817ba2d7411d8CAS | 14985253PubMed |

Han, S. K., Gottsch, M. L., Lee, K. J., Popa, S. M., Smith, J. T., Jakawich, S. K., Clifton, D. K., Steiner, R. A., and Herbison, A. E. (2005). Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J. Neurosci. 25, 11 349–11 356.
Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlaksrrO&md5=66aa8d7a0880f1d8d33ea9bdc9cebf2cCAS |

Homma, T., Sakakibara, M., Yamada, S., Kinoshita, M., Iwata, K., Tomikawa, J., Kanazawa, T., Matsui, H., Takatsu, Y., Ohtaki, T., Matsumoto, H., Uenoyama, Y., Maeda, K., and Tsukamura, H. (2009). Significance of neonatal testicular sex steroids to defeminize anteroventral periventricular kisspeptin neurons and the GnRH/LH surge system in male rats. Biol. Reprod. 81, 1216–1225.
Significance of neonatal testicular sex steroids to defeminize anteroventral periventricular kisspeptin neurons and the GnRH/LH surge system in male rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2lt7nJ&md5=f56e44b6b6c9936b9725fe273752934eCAS | 19684332PubMed |

Hu, M. H., Li, X. F., McCausland, B., Li, S. Y., Gresham, R., Kinsey-Jones, J. S., Gardiner, J. V., Sam, A. H., Bloom, S. R., Poston, L., Lightman, S. L., Murphy, K. G., and O’Byrne, K. T. (2015). Relative importance of the arcuate and anteroventral periventricular kisspeptin neurons in control of puberty and reproductive function in female rats. Endocrinology 156, 2619–2631.
Relative importance of the arcuate and anteroventral periventricular kisspeptin neurons in control of puberty and reproductive function in female rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFartLrF&md5=eddd1860a6d778092f079d19782014a4CAS | 25875299PubMed |

Ikeda, Y., Nagai, A., Ikeda, M. A., and Hayashi, S. (2001). Neonatal oestrogen exposure inhibits steroidogenesis in the developing rat ovary. Dev. Dyn. 221, 443–453.
Neonatal oestrogen exposure inhibits steroidogenesis in the developing rat ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVymsb8%3D&md5=8733dae6f57df03f3b7a2580ef0f0edfCAS | 11500981PubMed |

Jordan, V. C., and Morrow, M. (1999). Tamoxifen, raloxifene and prevention of breast cancer. Endocr. Rev. 20, 253–278.
| 1:CAS:528:DyaK1MXktVaqtLw%3D&md5=606e336bc2b75acc60517f303a68967bCAS | 10368771PubMed |

Kezele, P., and Skinner, M. K. (2003). Regulation of ovarian primordial follicle assembly and development by oestrogen and progesterone: endocrine model of follicle assembly. Endocrinology 144, 3329–3337.
Regulation of ovarian primordial follicle assembly and development by oestrogen and progesterone: endocrine model of follicle assembly.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlslGjsLg%3D&md5=bc0b002b3b4f722cfe07c480038a43faCAS | 12865310PubMed |

Kipp, J. L., Kilen, S. M., Bristol-Gould, S., Woodruff, T. K., and Mayo, K. E. (2007). Neonatal exposure to oestrogens suppresses activin expression and signaling in the mouse ovary. Endocrinology 148, 1968–1976.
Neonatal exposure to oestrogens suppresses activin expression and signaling in the mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFChu70%3D&md5=5344ad0e7263ae051a3a41ee2e2ad1fbCAS | 17255206PubMed |

Lampert, C., Arcego, D. M., Laureano, D. P., Diehl, L. A., da Costa Lima, I. F., Krolow, R., Pettenuzzo, L. F., Dalmaz, C., and Vendite, D. (2013). Effect of chronic administration of tamoxifen and/or estradiol on feeding behavior, palatable food and metabolic parameters in ovariectomized rats. Physiol. Behav. 119, 17–24.
Effect of chronic administration of tamoxifen and/or estradiol on feeding behavior, palatable food and metabolic parameters in ovariectomized rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFKlu7zP&md5=f36499516cff2a31a398ca076a241068CAS | 23688948PubMed |

Losa, S. M., Todd, K. L., Sullivan, A. W., Cao, J., Mickens, J. A., and Patisaul, H. B. (2011). Neonatal exposure to genistein adversely impacts the ontogeny of hypothalamic kisspeptin signaling pathways and ovarian development in the peripubertal female rat. Reprod. Toxicol. 31, 280–289.
Neonatal exposure to genistein adversely impacts the ontogeny of hypothalamic kisspeptin signaling pathways and ovarian development in the peripubertal female rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFeitrw%3D&md5=65d1ca90fa54f5b88b79d3c904e6c09fCAS | 20951797PubMed |

Losa-Ward, S. M., Todd, K. L., McCaffrey, K. A., Tsutsui, K., and Patisaul, H. B. (2012). Disrupted organization of RFamide pathways in the hypothalamus is associated with advanced puberty in female rats neonatally exposed to bisphenol A. Biol. Reprod. 87, 28.
Disrupted organization of RFamide pathways in the hypothalamus is associated with advanced puberty in female rats neonatally exposed to bisphenol A.Crossref | GoogleScholarGoogle Scholar | 22572997PubMed |

Malekinejad, H., Hamidi, M., Sadrkhanloo, R. A., and Ahmadi, A. (2011). The effect of tamoxifen on the fetal and neonatal ovarian follicles development in rats. Iran. J. Basic Med. Sci. 14, 240–248.
| 1:CAS:528:DC%2BC3MXoslahsro%3D&md5=b76adda95badc32e1278e7495a3ea7e4CAS |

May, P. C., Kohama, S. G., and Finch, C. E. (1989). N-Methyl-aspartic acid lesions of the arcuate nucleus in adult C57BL/6J mice: a new model for agerelated lengthening of the oestrus cycle. Neuroendocrinology 50, 605–612.
N-Methyl-aspartic acid lesions of the arcuate nucleus in adult C57BL/6J mice: a new model for agerelated lengthening of the oestrus cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlvFais7k%3D&md5=3d90f6cd3689f136021a29349a50368bCAS | 2514398PubMed |

Mazaud Guittot, S., Guigon, C. J., Coudouel, N., and Magre, S. (2006). Consequences of fetal irradiation on follicle histogenesis and early follicle development in rat ovaries. Biol. Reprod. 75, 749–759.
Consequences of fetal irradiation on follicle histogenesis and early follicle development in rat ovaries.Crossref | GoogleScholarGoogle Scholar | 16855212PubMed |

McCarthy, M. M. (2008). Estradiol and the developing brain. Physiol. Rev. 88, 91–134.
Estradiol and the developing brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVKgsbY%3D&md5=8d58bb74d52bcbb47c63bfc77687122aCAS | 18195084PubMed |

Merry, D. E., and Korsmeyer, S. J. (1997). BCL-2 gene family in the nervous system. Annu. Rev. Neurosci. 20, 245–267.
BCL-2 gene family in the nervous system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhslSjtrw%3D&md5=bddf8d6ab67bc59279c92dc0f2278b44CAS | 9056714PubMed |

Messager, S., Chatzidaki, E. E., Ma, D., Hendrick, A. G., Zahn, D., Dixon, J., Thresher, R. R., Malinge, I., Lomet, D., Carlton, M. B., Colledge, W. H., and Caraty, A. (2005). Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc. Natl Acad. Sci. USA 102, 1761–1766.
Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1Klu7Y%3D&md5=5c90653551be5a8dcc7affc2c2e1cbf4CAS | 15665093PubMed |

Morris, J. A., Jordan, C. L., and Breedlove, S. M. (2004). Sexual differentiation of the vertebrate nervous system. Nat. Neurosci. 7, 1034–1039.
Sexual differentiation of the vertebrate nervous system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVOnt74%3D&md5=ad684146cee850fdbfaa6eb1bb557e59CAS | 15452574PubMed |

Myers, M., Britt, K. L., Wreford, N. G. M., Ebling, F. J. P., and Kerr, J. B. (2004). Methods for quantifying follicular numbers within the mouse ovary. Reproduction 127, 569–580.
Methods for quantifying follicular numbers within the mouse ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkvFOqu78%3D&md5=4d558d79990170bcf8931596982bad38CAS | 15129012PubMed |

Oakley, A. E., Clifton, D. K., and Steiner, R. A. (2009). Kisspeptin signaling in the brain. Endocr. Rev. 30, 713–743.
Kisspeptin signaling in the brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyhsrbE&md5=b841ba57f7137ada1cc7da7fa2f5b95dCAS | 19770291PubMed |

Okamura, H., Yamamura, T., and Wakabayashi, Y. (2013). Kisspeptin as a master player in the central control of reproduction in mammals: an overview of kisspeptin research in domestic animals. Anim. Sci. J. 84, 369–381.
Kisspeptin as a master player in the central control of reproduction in mammals: an overview of kisspeptin research in domestic animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSqu7fO&md5=c0ffd84e811e5716f1dd76d3b846fa87CAS | 23607315PubMed |

Patisaul, H. B., Luskin, J. R., and Wilson, M. E. (2004). A soy supplement and tamoxifen inhibit sexual behavior in female rats. Horm. Behav. 45, 270–277.
A soy supplement and tamoxifen inhibit sexual behavior in female rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFylu7k%3D&md5=b4c4b7aa2f70808978f424d63bcd0899CAS | 15053943PubMed |

Patisaul, H. B., Todd, K. L., Mickens, J. A., and Adewale, H. B. (2009). Impact of neonatal exposure to the ERα agonist PPT, bisphenol-A or phytooestrogens on hypothalamic kisspeptin fiber density in male and female rats. Neurotoxicology 30, 350–357.
Impact of neonatal exposure to the ERα agonist PPT, bisphenol-A or phytooestrogens on hypothalamic kisspeptin fiber density in male and female rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFCjtrw%3D&md5=0d8b9e819c55e00aaf718a89b0e3eb47CAS | 19442818PubMed |

Pinilla, L., Barreiro, M. L., Gonzalez, L. C., Tena-Sempere, M., and Aguilar, E. (2002). Comparative effects of testosterone propionate, oestradiol benzoate, ICI 182,780, tamoxifen and raloxifene on hypothalamic differentiation in the female rat. J. Endocrinol. 172, 441–448.
Comparative effects of testosterone propionate, oestradiol benzoate, ICI 182,780, tamoxifen and raloxifene on hypothalamic differentiation in the female rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVShsbk%3D&md5=e67e8f707951c35a79878450fafeba25CAS | 11874692PubMed |

Poulet, F. M., Roessler, M. L., and Vancutsem, P. M. (1997). Initial uterine alterations caused by developmental exposure to tamoxifen. Reprod. Toxicol. 11, 815–822.
Initial uterine alterations caused by developmental exposure to tamoxifen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvFWmtLs%3D&md5=77e156b86123251fb5ddd3251df2f3c0CAS | 9407592PubMed |

Sato, M., Rippy, M. K., and Bryant, H. U. (1996). Raloxifene, tamoxifen, nafoxidine, or oestrogen effects on reproductive and nonreproductive tissues in ovariectomized rats. FASEB J. 10, 905–912.
| 1:CAS:528:DyaK28XjslSrsbw%3D&md5=f8b4b70d58b620a0a8f2af5edf211c3cCAS | 8666168PubMed |

Schmittgen, T. D., and Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108.
Analyzing real-time PCR data by the comparative CT method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVemt7c%3D&md5=c9af4cd1fb90fdc7f3a7e145ccaafe84CAS | 18546601PubMed |

Semaan, S. J., and Kauffman, A. S. (2010). Sexual differentiation and development of forebrain reproductive circuits. Curr. Opin. Neurobiol. 20, 424–431.
Sexual differentiation and development of forebrain reproductive circuits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyiu7%2FK&md5=18b097ac637a0f42bc8622ba96f817b4CAS | 20471241PubMed |

Skinner, M. K. (2005). Regulation of primordial follicle assembly and development. Hum. Reprod. Update 11, 461–471.
Regulation of primordial follicle assembly and development.Crossref | GoogleScholarGoogle Scholar | 16006439PubMed |

Sommer, S., and Fuqua, S. A. (2001). Oestrogen receptor and breast cancer. Semin. Cancer Biol. 11, 339–352.
Oestrogen receptor and breast cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvVGgtro%3D&md5=b6bb9857145570caa481338b65a49a0fCAS | 11562176PubMed |

Stoker, T. E., Laws, S. C., Crofton, K. M., Hedge, J. M., Ferrell, J. M., and Cooper, R. L. (2004). Assessment of DE-71, a commercial polybrominated diphenyl ether (PBDE) mixture, in the EDSP male and female pubertal protocols. Toxicol. Sci. 78, 144–155.
Assessment of DE-71, a commercial polybrominated diphenyl ether (PBDE) mixture, in the EDSP male and female pubertal protocols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFSqsL8%3D&md5=499e4d85fd85e381a190fcb82fdde4a7CAS | 14999130PubMed |

Tena-Sempere, M. (2010). Kisspeptin/GPR54 system as potential target for endocrine disruption of reproductive development and function. Int. J. Androl. 33, 360–368.
Kisspeptin/GPR54 system as potential target for endocrine disruption of reproductive development and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvFCqu7c%3D&md5=b6034b173b16d39d3564cd6b3faa63c1CAS | 19906185PubMed |

Terasawa, E., and Fernandez, D. L. (2001). Neurobiological mechanisms of the onset of puberty in primates. Endocr. Rev. 22, 111–151.
| 1:CAS:528:DC%2BD3MXhsFait7o%3D&md5=ef8ee2956da9b39322541a6132b4a9bfCAS | 11159818PubMed |

Treeck, O., Lattrich, C., Springwald, A., and Ortmann, O. (2010). Oestrogen receptor beta exerts growth-inhibitory effects on human mammary epithelial cells. Breast Cancer Res. Treat. 120, 557–565.
Oestrogen receptor beta exerts growth-inhibitory effects on human mammary epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1ajtbg%3D&md5=78b06480cba0ec71869af1b2213adf37CAS | 19434490PubMed |

West, M. J. (1999). Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci. 22, 51–61.
Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhtVCrtLg%3D&md5=1541fc858659524a60bf86cb9411e522CAS | 10092043PubMed |

Wiegand, S. J., Terasawa, E., Bridson, W. E., and Goy, R. W. (1980). Effects of discrete lesions of preoptic and suprachiasmatic structures in the female rat. Alterations in the feedback regulation of gonadotropin secretion. Neuroendocrinology 31, 147–157.
Effects of discrete lesions of preoptic and suprachiasmatic structures in the female rat. Alterations in the feedback regulation of gonadotropin secretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXls1Ggs7s%3D&md5=6b3c8511e8834aeb8f5e35b6e486a963CAS | 6771669PubMed |

Williams, W. P., and Kriegsfeld, L. J. (2012). Circadian control of neuroendocrine circuits regulating female reproductive function. Front. Endocrinol. (Lausanne) 3, 60.
Circadian control of neuroendocrine circuits regulating female reproductive function.Crossref | GoogleScholarGoogle Scholar | 22661968PubMed |

Zhang, G. J., Kimijima, I., Onda, M., Kanno, M., Sato, H., Watanabe, T., Tsuchiya, A., Abe, R., and Takenoshita, S. (1999). Tamoxifen-induced apoptosis in breast cancer cells relates to down-regulation of bcl-2, but not bax and bcl-X(L), without alteration of p53 protein levels. Clin. Cancer Res. 5, 2971–2977.
| 1:CAS:528:DyaK1MXntlGlu70%3D&md5=c9f2514c4d333b9b87327512b5c7cd63CAS | 10537367PubMed |