Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

287 ACTIVE MITOCHONDRIA ARE PRESENT IN MOUSE AND MONKEY EMBRYONIC STEM CELL LINES

T. Lonergan, A. Harvey, J. Zhao, B. Bavister and C. Brenner

Reproduction, Fertility and Development 20(1) 223 - 223
Published: 12 December 2007

Abstract

The inner cell mass (ICM) of the blastocyst develops into the fetus after uterine implantation. Prior to implantation, ICM cells synthesize ATP by glycolytic reactions. We now report that cells of the ICM in 3.5-day-old mouse embryos have too few mitochondria to be visualized with either Mitotracker red (active mitochondria) or an antibody against complex I of OXPHOS. By comparison, all of the surrounding trophectoderm cells reveal numerous mitochondria throughout their cytoplasm. It has largely been assumed that embryonic stem (ES) stem cells derived from the ICM also have few mitochondria, and that replication of mitochondria in the ES cells does not begin until they commence differentiation. We further report that mouse E14 ES cells and monkey ORMES 7 ES cells have considerable numbers of active mitochondria when cultured under standard conditions, i.e., 5% CO2 in air. Both the mouse E14 and monkey ES cell lines expressed two markers of undifferentiated cells, Oct-4 and SSEA-4, and monkey ES cells expressed the undifferentiated cell marker Nanog; however, Oct-4 is nonspecific in monkey ES cells because trophectoderm also expresses this marker, unlike in mice. Ninety-nine percent of the E14 cells examined, and 100% of the ORMES 7 cells, have a visible mitochondrial mass when stained with either Mitoracker red or with an antibody against OXPHOS complex I. The ATP content in the mouse E14 cells (4.13 pmoles ATP/cell) is not significantly different (P = 0.76) from that in a mouse fibroblast control (3.75 pmoles ATP/cell). Cells of the monkey ORMES 7 cell line had 61% of the ATP/cell content (7.55 pmoles ATP/cell) compared to the monkey fibroblast control (12.38 pmoles ATP/cell). Both cell lines expressed two proteins believed to indicate competence of mitochondria to replicate: PolG, the polymerase used to replicate the mitochondrial genome, and TFAM, a nuclear-encoded transcription factor reported to regulate several aspects of mitochondrial function. Both proteins were found to co-localize in the mitochondria. We conclude that when the ICMs are isolated from blastocysts and used to establish these two ES cell lines in cell culture, mitochondrial biosynthesis is activated.

https://doi.org/10.1071/RDv20n1Ab287

© CSIRO 2007

Committee on Publication Ethics

Export Citation Cited By (1) Get Permission

Share

Share on Facebook Share on Twitter Share on LinkedIn Share via Email

View Dimensions