Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

185 DEVELOPMENT CAPACITY OF PRE- AND POSTPUBERTAL PIG OOCYTES EVALUATED BY SOMATIC CELL NUCLEAR TRANSFER AND PARTHENOGENETIC ACTIVATION

H. S. Pedersen A , R. Li A , Y. Liu A , P. Løvendahl A , P. Holm B , P. Hyttel B and H. Callesen A
+ Author Affiliations
- Author Affiliations

A Aarhus University, Tjele, Denmark;

B University of Copenhagen, Copenhagen, Denmark

Reproduction, Fertility and Development 25(1) 241-242 https://doi.org/10.1071/RDv25n1Ab185
Published: 4 December 2012

Abstract

Most of the porcine oocytes used for in vitro studies are collected from gilts. Our aims were to study development capacity of gilt v. sow oocytes (pre- and postpubertal respectively) using 2 techniques illustrating development competence [parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT)], and to describe a simple method to select the most competent oocytes. Inside-ZP diameter of in vitro-matured gilt oocytes was measured (µm; small ≤110; medium >110; large ≥120). Gilt and sow oocytes were morphologically grouped as good (even cytoplasm, smooth cell membrane, visible perivitelline space) or bad before used for PA (good and bad) or SCNT (good). The PA and SCNT were performed as before with minor modifications (Cryobiol. 64, 60; Cell. Reprogr. 13, 521) before culture for 6 days in a standard or timelapse incubator. Rates of cleavage (CL%, Day 2), blastocyst (BL%, Day 6), and blastocyst cell number (Hoechst 33342) were recorded. For PA embryos in a timelapse incubator (26 oocytes/group; 2 replicates), the first appearance of 2-cell stage was recorded. Between groups, CL% and BL% were analysed by chi-square and cell number by t-test. Results are presented in the table for the development of good oocytes after PA. The results show a low CL% of small-gilts compared with the other groups. The BL% increased with gilt-oocyte-diameter; however, sow oocytes reached the highest BL%. Total cell number was higher in sow than in gilt blastocysts. The SCNT experiments showed no differences in CL% (90–96) and blastocyst cell number (51–59) between groups. The BL% was higher in medium gilts and sows (41; 45) compared with large gilts (21). The BL% of bad oocytes was 1% from all 4 groups (176 oocytes, 25 replicates). Time interval for appearance of 2-cell stage for embryos developing into blastocysts showed no differences between groups (19–20 h). Within groups, this time interval showed a larger standard deviation for embryos not developing v. embryos developing into blastocysts. It is concluded that (a) sow oocytes have higher developmental capacity compared to gilts, (b) small gilt oocytes are not developmentally competent, (c) measurement of inside-ZP diameter, combined with morphological selection, is useful to remove non-competent oocytes. Further studies are needed to dissect the developmental capacity of medium and large gilt oocytes. Also, further timelapse studies may reveal a time interval in which the first cleavage of embryos with high developmental capacity takes place.


Table 1.  Rates of cleavage (CL%), blastocyst (BL%), and total no. of cells (mean ± SEM) in blastocysts of PA embryos from gilts and sows1
Click to zoom