CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Chemistry   
Australian Journal of Chemistry
Journal Banner
  An international journal for chemical science
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
For Advertisers
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Covers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

Affiliated with RACI

Royal Australian Chemical Institute
Royal Australian
Chemical Institute


 

Article << Previous     |     Next >>   Contents Vol 65(12)

Progress in Microwave-Aided Chemical Synthesis

Hani Mutlak A. Hassan A B , Steve Harakeh A , Kaltoom A. Sakkaf A and Iuliana Denetiu A

A King Fahd Medical Research Centre, King Abdulaziz University, PO Box 80216, Jeddah 21589, Kingdom of Saudi Arabia.
B Corresponding author. Email: hmahassan@kau.edu.sa

Australian Journal of Chemistry 65(12) 1647-1654 http://dx.doi.org/10.1071/CH12366
Submitted: 5 August 2012  Accepted: 16 September 2012   Published: 29 October 2012


 
PDF (1.3 MB) $25
 Export Citation
 Print
  
Abstract

The continuing use of microwave (µwave) energy in chemical synthesis has been impressive over the past decade, with many reports incorporating µwave-based reactions. Two of the major benefits of using µwave heating are the remarkable decrease in reaction times and often high yield of products in comparison with classical heating, an ideal technology for synthetic chemists. Herein, we highlight some exciting examples of its recent utility in organic, medicinal, and natural product synthetic endeavours.





References

[1]  R. N. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, J. Rousell, Tetrahedron Lett. 1986, 27, 279.
         | CrossRef | CAS |

[2]  R. J. Giguere, T. L. Bray, S. M. Duncan, G. Majetich, Tetrahedron Lett. 1986, 27, 4945.
         | CrossRef | CAS |

[3]  (a) C. O. Kappe, Angew. Chem. Int. Ed. 2004, 43, 6250.
         | CrossRef | CAS |
      (b) P. Lidström, J. Tierney, B. Wathey, J. Westman, Tetrahedron 2001, 57, 9225.
         | CrossRef |

[4]  D. S. Ermolat’ev, J. B. Bariwal, H. P. L. Steenackers, S. C. J. De Keersmaecker, E. V. Van der Eycken, Angew. Chem. Int. Ed. 2010, 49, 9465.
         | CrossRef | CAS |

[5]  F. Besselièvre, F. Mahuteau-Betzer, D. S. Grierson, S. Piguel, J. Org. Chem. 2008, 73, 3278.
         | CrossRef |

[6]  D. Tang, J. R. Buck, M. R. Hight, H. C. Manning, Tetrahedron Lett. 2010, 51, 4595.
         | CrossRef | CAS |

[7]  C. Hamel, E. V. Prusov, J. Gertsch, W. B. Schweizer, K.-H. Altmann, Angew. Chem. Int. Ed. 2008, 47, 10081.
         | CrossRef | CAS |

[8]  J. J. Day, R. M. McFadden, S. C. Virgil, H. Kolding, J. L. Alleva, B. M. Stoltz, Angew. Chem. Int. Ed. 2011, 50, 6814.
         | CrossRef | CAS |

[9]  D. C. K. Rathwell, S.-H. Yang, K. Y. Tsang, M. A. Brimble, Angew. Chem. Int. Ed. 2009, 121, 8140.
         | CrossRef |

[10]  B. A. Haag, Z.-G. Zhang, J.-S. Li, P. Knochel, Angew. Chem. Int. Ed. 2010, 49, 9513.
         | CrossRef | CAS |

[11]  S. L. Gaonkar, H. Shimizu, Tetrahedron 2010, 66, 3314.
         | CrossRef | CAS |

[12]  A. L. Williams, S. R. Dandepally, N. Gilyazova, S. M. Witherspoon, G. Ibeanu, Tetrahedron 2010, 66, 9577.
         | CrossRef | CAS |

[13]  D. A. Mustafa, B. A. Kashemirov, C. E. McKenna, Tetrahedron Lett. 2011, 52, 2285.
         | CrossRef | CAS |

[14]  H. M. A. Hassan, F. K. Brown, Chem. Commun. 2010, 46, 3013.
         | CrossRef | CAS |

[15]  S.-J. Yan, C. Huang, X.-H. Zeng, R. Huang, J. Lin, Bioorg. Med. Chem. Lett. 2010, 20, 48.
         | CrossRef | CAS |

[16]  S. T. A. Shah, S. Singh, P. J. Guiry, J. Org. Chem. 2009, 74, 2179.
         | CrossRef | CAS |

[17]  J.-S. Lee, N.-Y. Kang, Y. K. Kim, A. Samanta, S. Feng, H. K. Kim, M. Vendrell, J. H. Park, Y.-T. Chang, J. Am. Chem. Soc. 2009, 131, 10077.
         | CrossRef | CAS |

[18]  G. Bartoli, G. Di Antonio, R. Giovannini, S. Giuli, S. Lanari, M. Paoletti, E. Marcantoni, J. Org. Chem. 2008, 73, 1919.
         | CrossRef | CAS |

[19]  L. Aguado, H. J. Thibaut, E.-M. Priego, M.-L. Jimeno, M.-J. Camarasa, J. Neyts, M.-J. Pérez-Pérez, J. Med. Chem. 2010, 53, 316.
         | CrossRef | CAS |

[20]  L. De Luca, M. L. Barreca, S. Ferro, F. Christ, N. Iraci, R. Gitto, A. M. Monforte, Z. Debyser, A. Chimirri, ChemMedChem 2009, 4, 1311.
         | CrossRef | CAS |

[21]  H. Huang, H. Liu, H. Jiang, K. Chen, J. Org. Chem. 2008, 73, 6037.
         | CrossRef | CAS |

[22]  N. Gavande, G. A. R. Johnston, J. R. Hanrahan, M. Chebib, Org. Biomol. Chem. 2010, 8, 4131.
         | CrossRef | CAS |

[23]  D. M. Huryn, J. L. Brodsky, K. M. Brummond, P. G. Chambers, B. Eyer, A. W. Ireland, M. Kawasumi, M. G. LaPorte, K. Lloyd, B. Manteau, P. Nghiem, B. Quade, S. P. Seguin, P. Wipf, Proc. Natl. Acad. Sci. USA 2011, 108, 6757.
         | CrossRef | CAS |


   
Subscriber Login
Username:
Password:  

 


    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014