Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Electrochemical Reduction and Detection of Nitrobenzene Based on Porphyrin Composite-modified Glassy Carbon Electrode

Zhonghua Xue A , Huan Lian A , Chenxian Hu A , Yanjun Feng A , Fan Zhang A , Xiuhui Liu A and Xiaoquan Lu A B
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China.

B Correspoding author. Email: luxq@nwnu.edu.cn

Australian Journal of Chemistry 67(5) 796-804 https://doi.org/10.1071/CH13607
Submitted: 8 November 2013  Accepted: 1 January 2014   Published: 24 February 2014

Abstract

An electrocatalytic platform and electrochemical sensor for nitrobenzene using tetra(4-methoxyphenyl) porphyrin-functionalized N-doped ordered mesoporous carbon (TMPP/N-OMC) as sensitive material is reported. Glassy carbon electrodes modified with TMPP/N-OMC were characterized by scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrode shows high electrocatalytic activity towards the reduction of nitrobenzene in sodium chloride solution (pH 7.00). Electrocatalytic reduction currents of nitrobenzene were found to be linearly related to concentration over the range 0.528 to 132.00 μM with a correlation coefficient of 0.9971 using a differential pulse voltammogram method. The detection limits were determined as 0.2162 μM at a signal-to-noise ratio of 3. The results show TMPP/N-OMC-modified glassy carbon electrodes open new opportunities for fast, simple, and sensitive field analysis of nitrobenzene.


References

[1]  X. Y. Lin, J. P. Zhang, X. G. Luo, C. Zhang, Mater. Sci. Forum 2011, 695, 117.
         | 1:CAS:528:DC%2BC3MXhsFKnsL7J&md5=0d12fae501c5e13ca7bd9a2a45c36f38CAS |

[2]  Y. Zhang, X. Bo, C. Luhana, H. Wang, M. Li, L. Guo, RSC Advances 2013, 38, 17300.

[3]  Y.-P. Li, H.-B. Cao, C.-M. Liu, Y. Zhang, J. Hazard. Mater. 2007, 148, 158.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFSnu7Y%3D&md5=1c37a5585831e43dac8df88f5f979de8CAS | 17374445PubMed |

[4]  E. R. Goldman, T. J. Cohill, C. H. Patterson, G. P. Anderson, A. W. Kusterbeck, J. M. Mauro, Environ. Sci. Technol. 2003, 37, 4733.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlSktL8%3D&md5=43d389d72822f22702590802e45785bdCAS | 14594385PubMed |

[5]  C. K. Chua, M. Pumera, L. R. Rulíšek, J. Phys. Chem. C 2012, 116, 4243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktVKjtg%3D%3D&md5=585e70e00a27ac7cabf1d62b114da705CAS |

[6]  D. F. Laine, I. F. Cheng, Microchem. J. 2009, 91, 125.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVykurbL&md5=3bdc16facc23acd78e8ea497b0e1aa7fCAS |

[7]  B. Qi, F. Lin, J. Bai, L. Liu, L. Guo, Mater. Lett. 2008, 62, 3670.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1Ogsbg%3D&md5=ec3ff2bb4c9421ff097c9dd8553f5c31CAS |

[8]  S. Content, W. C. Trogler, M. J. Sailor, Chem. Eur. J. 2000, 6, 2205.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvVWgurc%3D&md5=30c67cce9f973b887d645bd529e0f594CAS | 10926227PubMed |

[9]  R. Wilson, C. Clavering, A. Hutchinson, Anal. Chem. 2003, 75, 4244.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsFOiu7o%3D&md5=7a63c923f2ed98eea98da9ff5551c0d4CAS | 14632142PubMed |

[10]  F. Liang, B. Liu, Y. Deng, S. Yang, C. Sun, Microchim. Acta 2011, 174, 407.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVSmtbbP&md5=090e5d8b77a6b2cfd9a73d22db4ecc04CAS |

[11]  J. Ma, Y. Zhang, X. Zhang, G. Zhu, B. Liu, J. Chen, Talanta 2012, 88, 696.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKltbg%3D&md5=667c4589998af7314ed64f66ba46d234CAS | 22265560PubMed |

[12]  X. B. Zhou, C. X. Yuan, D. D. Qin, Z. H. Xue, Y. L. Wang, J. D. L. L. Ma, Electrochim. Acta 2013,

[13]  G. Maduraiveeran, R. Ramaraj, Anal. Chem. 2009, 81, 7552.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWjsLfN&md5=b22dee85aaec11a74b2acb76f75223d3CAS | 19691270PubMed |

[14]  M. Biesaga, K. Pyrzyńska, M. Trojanowicz, Talanta 2000, 51, 209.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXoslehtg%3D%3D&md5=36814409aa08846f1f06d650efb5c1d0CAS | 18967853PubMed |

[15]  X. Lu, H. Qi, X. Zhang, Z. Xue, J. Jin, X. Zhou, X. Liu, Chem. Commun. 2011, 12494.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGrs7jI&md5=be8dbc203874f1dc70843b743195f277CAS |

[16]  H.-X. Zhang, A.-M. Cao, J.-S. Hu, L.-J. Wan, S.-T. Lee, Anal. Chem. 2006, 78, 1967.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotV2htA%3D%3D&md5=78e4b85106193cc5ee0aee7435d7f6bcCAS | 16536434PubMed |

[17]  F. Zhi, X. Lu, J. Yang, X. Wang, H. Shang, S. Zhang, Z. Xue, J. Phys. Chem. C 2009, 113, 13166.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVejt70%3D&md5=27d0aadc9194d58734f9e6c5dadb5787CAS |

[18]  X. Lu, Y. Quan, Z. Xue, B. Wu, H. Qi, D. Liu, Colloid Surfaces B Biointerfaces 2011, 88, 396.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2qtbzL&md5=d0eff17a6e0a5b789b287c554392831bCAS |

[19]  N. K. Subbaiyan, I. Obraztsov, C. A. Wijesinghe, K. Tran, W. Kutner, F. D’Souza, J. Phys. Chem. C 2009, 113, 8982.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVChtbg%3D&md5=7950d7d776603a00d369bf0291164323CAS |

[20]  M. E. El-Zaria, Spectrochim. Acta [A] 2008, 69, 216.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  Q. Wang, F. Zhi, W. Wang, X. Xia, X. Liu, F. Meng, Y. Song, C. Yang, X. Lu, J. Phys. Chem. C 2009, 113, 9359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFCqtbc%3D&md5=ef5a5e77cebca4de120ef1dce1a43311CAS |

[22]  V. Ganesh, S. K. Pal, S. Kumar, V. Lakshminarayanan, J. Colloid Interface Sci. 2006, 296, 195.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvF2ktbo%3D&md5=fd8acc6c76df9204f616a79961b6443fCAS | 16209874PubMed |

[23]  Y. Quan, Z. Xue, H. Shi, X. Zhou, J. Du, X. Liu, X. Lu, Analyst 2012, 137, 944.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGisro%3D&md5=db4bead076e9e4a07dc47d7c3a42d925CAS | 22184582PubMed |

[24]  W. M. Hikal, H. J. Harmon, J. Hazard. Mater. 2008, 154, 826.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsFCju7k%3D&md5=9692575e02ad1a5d7b111c98964e5e68CAS | 18063299PubMed |

[25]  C. X. Guo, Y. Lei, C. M. Li, Electroanalysis 2011, 23, 885.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktFKhsLo%3D&md5=f54dbc1c54e5148febd43fd7654a3d2aCAS |

[26]  Y. Liu, Y. Yu, Q. Yang, Y. Qu, Y. Liu, G. Shi, Sensor. Actuat. B Chem. 2008, 131, 432.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslyhtr4%3D&md5=80331756c4b95468da551bd6d8cff38bCAS |

[27]  W. Chen, Y. Wang, C. Brückner, C. M. Li, Y. Lei, Sensor. Actuat. B Chem. 2010, 147, 191.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlslChurs%3D&md5=399159936dd912ee0b230d110f48b785CAS |

[28]  J. Ma, Y. Zhang, X. Zhang, G. Zhu, B. Liu, J. Chen, Talanta 2012, 88, 696.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFKltbg%3D&md5=667c4589998af7314ed64f66ba46d234CAS | 22265560PubMed |

[29]  L. Zhang, W. J. Yuan, B. Q. Hou, J. Electroanal. Chem. 2013, 689, 135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFemsbg%3D&md5=647a0823ff50cf842626d94591599a5bCAS |

[30]  R. N. Goyal, V. K. Gupta, S. Chatterjee, Biosens. Bioelectron. 2009, 24, 3562.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXoslaiu7Y%3D&md5=05e35decf29fac08bffc885c3c70de96CAS | 19523805PubMed |