Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Elusive Ethenediselone, Se=C=C=Se

Carl Th. Pedersen A F , Ming Wah Wong B , Kazuo Takimiya C , Pascal Gerbaux D and Robert Flammang E
+ Author Affiliations
- Author Affiliations

A Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, DK-5230 Odense M, Denmark.

B Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543.

C Emergent Molecular Function Research Group, RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.

D Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, UMONS, B-7000 Mons, Belgium.

E Deceased. Formerly of the Organic Synthesis and Mass Spectrometry Laboratory, University of Mons, UMONS, B-7000 Mons, Belgium.

F Corresponding author. Email: cthp@sdu.dk

Australian Journal of Chemistry 67(9) 1195-1200 https://doi.org/10.1071/CH14098
Submitted: 25 February 2014  Accepted: 7 March 2014   Published: 31 March 2014

Abstract

The neutral ethenediselone, Se=C=C=Se, has been characterised by neutralisation–reionisation mass spectrometry, which implies a minimum lifetime of the order of microseconds. Tetraselenafulvalene 1 and tetramethyltetraselenafulvalene 2 were used as precursor molecules. Flash vacuum thermolysis (FVT) of these compounds with isolation of the products in Ar matrices permitted the identification of ethyne, 2-butyne, CSe2, and selenoketene, H2C=C=Se, but at best traces of Se=C=C=Se survived the FVT/matrix isolation experiment. Multiconfigurational calculations indicate that Se=C=C=Se is a ground state triplet molecule with a very small singlet-triplet gap.


References

[1]  N. Goldberg, H. Schwarz, Acc. Chem. Res. 1994, 27, 347.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  D. Schröder, C. Heinemann, H. Schwarz, J. N. Harvey, S. Dua, S. J. Blanksby, J. H. Bowie, Chem. – Eur. J. 1998, 4, 2550.
         | Crossref | GoogleScholarGoogle Scholar |

[3]     (a) J. A. Berson, D. M. Birney, W. P. Dailey III, J. F. Liebman, in Modern Models of Bonding and Delocalization, Molecular Structures and Energetics (Eds J. F. Liebman, A. Greenberg) 1988, Vol. 6, pp. 391–441 (Wiley VCH: Weinheim).
      (b) D. M. Birney, J. A. Berson, Tetrahedron 1986, 42, 1561.and references therein.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. C. Haddon, D. Poppinger, L. Radom, J. Am. Chem. Soc. 1975, 97, 1645.and references therein.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  G. P. Raine, H. F. Schaefer, R. C. Haddon, J. Am. Chem. Soc. 1983, 105, 194.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) D. Sülzle, J. K. Terlouw, H. Schwarz, J. Am. Chem. Soc. 1990, 112, 628.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) G. Maier, H. P. Reisenauer, R. Ruppel, Angew. Chem. Int. Ed. 1997, 36, 1862.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  D. Sülzle, H. Schwarz, Angew. Chem. Int. Ed. 1988, 27, 1337.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) G. Maier, H. P. Reisenauer, J. Schrot, R. Janoschek, Angew. Chem. Int. Ed. 1990, 29, 1464.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) C. Wentrup, P. Kambouris, R. A. Evans, D. Owen, G. Macfarlane, J. Chuche, J. C. Pommelet, A. Ben Cheikh, M. Plisnier, R. Flammang, J. Am. Chem. Soc. 1991, 113, 3130.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. B. Bohn, Y. Hannachi, L. Andrews, J. Am. Chem. Soc. 1992, 114, 6452.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. W. Wong, C. Wentrup, R. Flammang, J. Phys. Chem. 1995, 99, 16849.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  N. L. Ma, M. W. Wong, Angew. Chem. Int. Ed. 1998, 37, 3402.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  R. Flammang, D. Landu, S. Laurent, M. Barbieux-Flammang, C. O. Kappe, M. W. Wong, C. Wentrup, J. Am. Chem. Soc. 1994, 116, 2005.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  G. Maier, H. P. Reisenauer, B. Röther, J. Eckwert, Liebigs Ann. Chem. 1996, 303.

[11]  R. Flammang, Y. Van Haverbeke, S. Laurent, M. Barbieux-Flammang, M. W. Wong, C. Wentrup, J. Phys. Chem. 1994, 98, 5801.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  (a) W. Weltner, R. J. Van Zee, Chem. Rev. 1989, 89, 1713.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) G. Maier, H. P. Reisenauer, R. Ruppel, Sulfur Rep. 1999, 21, 335.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. Flammang, C. Wentrup, Sulfur Rep. 1999, 21, 357.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Saito, Sulfur Rep. 1999, 21, 401.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) R. Flammang, C. Wentrup, Sulfur Rep. 1997, 20, 255.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  H.-Y. Wang, X. Lu, R.-B. Huang, L.-S. Zheng, J. Mol. Struct. THEOCHEM 2002, 593, 187.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  H. Ulrich, Cumulenes in Click Reactions 2009 (Wiley: Chichester).

[15]  G. W. King, K. Srikameswaran, J. Mol. Spectrosc. 1969, 29, 491.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  J. L. Laboy, D. J. Clouthier, Chem. Phys. Lett. 1995, 236, 211.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  I. S. Butler, M. L. Newbury, Spectrochim. Acta A 1980, 36A, 458.

[18]  R. F. Barrow, W. Jevons, Proc. Phys. Soc. 1948, 61, 99.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  C. Th. Pedersen, Asian Chem. Lett. 2003, 7, 41.

[20]  N. L. Ma, M. W. Wong, Eur. J. Org. Chem. 2000, 1411.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  R. F. C. Brown, Pyrolytic Methods in Organic Chemistry 1980 (Academic Press: New York, NY).

[22]  R. Flammang, M. Barbieux-Flammang, P. Gerbaux, C. Th. Pedersen, J. Chem. Soc., Perkin Trans. 2 1997, 1261.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  (a) R. H. Bateman, J. Brown, M. Lefevere, R. Flammang, Y. Van Haverbeke, Int. J. Mass Spectrom. 1992, 115, 205.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) J. Brown, R. Flammang, Y. Govaert, M. Plisnier, C. Wentrup, Y. Van Haverbeke, Rapid Commun. Mass Spectrom. 1992, 6, 249.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. Gerbaux, L. Lamote, Y. Van Haverbeke, R. Flammang, J. M. Brown, Eur. J. Mass Spectrom. 2012, 18, 93.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  (a) F. Tureček, Top. Curr. Chem. 2003, 225, 77.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) P. Gerbaux, Y. Van Haverbeke, R. Flammang, J. Mass Spectrom. 1997, 32, 1170.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  A. Morikami, T. Takimiya, Y. Aso, T. Otsubo, J. Mater. Chem. 2001, 11, 2431.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 (Revision A.2) 2009 (Gaussian, Inc.: Wallingford CT).

[27]  H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O’Neill, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A. Wolf, MOLPRO, Version 2010.1 2010 (University of Birmingham: Birmingham).

[28]  B. O. Roos, Adv. Chem. Phys. 1987, 69, 399.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  H.-J. Werner, Mol. Phys. 1996, 89, 645.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  H.-J. Werner, P. J. Knowles, J. Chem. Phys. 1988, 89, 5803.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  (a) M. W. Wong, Chem. Phys. Lett. 1996, 256, 391.
         | Crossref | GoogleScholarGoogle Scholar |
         (b) Precomputed vibrational scaling factors from the Computational Chemistry Comparison and Benchmark Database (CCCBC) in National Institute of Standards and Technology (NIST). Available at: http://cccbdb.nist.gov/vibscalejust.asp (accessed 10 February 2014).