Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Molecular Docking and Spectroscopic Study on the Interaction of Serum Albumin with Iron(iii) Diamine Sarcophagine

Bahman Vasheghani Farahani A C , Ghasem Rezanejade Bardajee B C , Farzaneh Hosseinpour Rajabi A and Zari Hooshyar A
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Faculty of Science, Imam Khomeini International University, PO Box 288, Qazvin 34149, Iran.

B Department of Chemistry, Payame Noor University, PO Box 19395-3697, Tehran, Iran.

C Corresponding authors. Email: bvasheghanif@yahoo.com; rezanejad@pnu.ac.ir

Australian Journal of Chemistry 68(6) 999-1010 https://doi.org/10.1071/CH14485
Submitted: 2 August 2014  Accepted: 22 October 2014   Published: 7 January 2015

Abstract

Iron(iii) diamine sarcophagine (DiAmsar) has attracted great attention in biological and medical applications. In particular, for any potential in vivo application, knowledge about the interaction of iron(iii) DiAmsar with serum albumin is crucial. As a step towards the elucidation of the fate of iron(iii) DiAmsar introduced into an organism, first, iron(iii) DiAmsar was synthesised and characterised. In the next step, interactions of iron(iii) DiAmsar with human serum albumin (HSA) and bovine serum albumin (BSA) were systematically investigated by various spectroscopic methods (Fourier-transform infrared, UV-visible, fluorescence) and cyclic voltammetry and molecular docking techniques under simulated physiological conditions. The fluorescence intensities of HSA and BSA decreased remarkably with increasing concentration of iron(iii) DiAmsar. The Stern–Volmer quenching constant KSV at different temperatures and corresponding thermodynamic parameters such as ΔHo, ΔGo, and ΔSo were calculated. The binding distance of iron(iii) DiAmsar with HSA and BSA was also determined using the theory of fluorescence energy transfer. Further, the conformational changes of HSA and BSA induced by iron(iii) DiAmsar were analysed by means of Fourier-transform (FT)-IR. In addition, molecular docking was performed to explore the possible binding sites and the microenvironment conditions around the bound iron(iii) DiAmsar.


References

[1]  S. Liu, D. Li, C. Huang, L. Yap, R. Park, H. Shan, Z. Li, P. S. Conti, Theranostics 2012, 2, 589.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFCqsbjN&md5=2b5ea5866157861d18ac2c28c9016c42CAS | 22737194PubMed |

[2]  G. A. Bottomley, I. J. Clark, I. I. Creaser, L. M. Engelhardt, R. J. Geue, K. S. Hagen, J. M. Harrowfield, G. A. Lawrance, P. A. Lay, A. M. Sargeson, A. J. See, B. W. Skelton, A. H. White, F. R. Wilner, Aust. J. Chem. 1994, 47, 143.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtFChtrc%3D&md5=575ef9861bd47b1d6b500e95c909efb9CAS |

[3]  H. Cai, J. Fissekis, P. S. Conti, Dalton Trans. 2009, 5395.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvVOltbs%3D&md5=f1b82b03fea58696c0351b51ab4508baCAS | 19565091PubMed |

[4]  P. V. Bernhardt, J. M. Harrowfield, Y. Kim, Y. H. Lee, Y. C. Park, A. Sujandi, Bull. Korean Chem. Soc. 2007, 28, 589.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1Oqt7c%3D&md5=a3278588dc74b33189ca91b1f3eb0decCAS |

[5]  K. A. Lears, R. Ferdani, K. Liang, A. Zheleznyak, R. Andrews, C. D. Sherman, S. Achilefu, C. J. Anderson, B. E. Rogers, J. Nucl. Med. 2011, 52, 470.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVGnuro%3D&md5=eda9895cb65ffd6d2944d2ec0ff5d4aaCAS | 21321264PubMed |

[6]  H. Cai, Z. Li, C. W. Huang, R. Park, A. H. Shahinian, P. S. Conti, Nucl. Med. Biol. 2010, 37, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WksL%2FL&md5=76d86fae54711ce33002868a9158c026CAS | 20122669PubMed |

[7]  S. D. Voss, S. V. Smith, N. DiBartolo, L. J. McIntosh, E. M. Cyr, A. A. Bonab, J. L. J. Dearling, E. A. Carter, A. J. Fischman, S. T. Treves, S. D. Gillies, A. M. Sargeson, J. S. Huston, A. B. Packard, Proc. Natl. Acad. Sci. USA 2007, 104, 17489.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ymtrfO&md5=561764efc45de5f6ab239ae030a5a2d2CAS | 17954911PubMed |

[8]  T. J. Wadas, E. H. Wong, G. R. Weisman, C. J. Anderson, Curr. Pharm. Des. 2007, 13, 3.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Wjsrs%3D&md5=55632ccde3cb28b7c40b8537c3a929b2CAS | 17266585PubMed |

[9]  L. Wei, Y. Ye, T. J. Wadas, J. S. Lewis, M. J. Welch, S. Achilefu, C. J. Anderson, Nucl. Med. Biol. 2009, 36, 277.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVOrs7Y%3D&md5=6c474028d1101fe2e9bfcf7aee466e40CAS | 19324273PubMed |

[10]  H. Cai, Z. Li, C. Huang, R. Park, A. H. Shahinian, P. S. Conti, Nucl. Med. Biol. 2010, 37, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WksL%2FL&md5=76d86fae54711ce33002868a9158c026CAS | 20122669PubMed |

[11]  G. J. Christian, A. Arbuse, X. Fontrodona, M. A. Martinez, A. Lobet, F. Maseras, Dalton Trans. 2009, 6013.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVeqsbg%3D&md5=93c2cb6b0f3b9e41eed0eb768b9f9d34CAS | 19623402PubMed |

[12]  M. D. Hall, T. W. Failes, N. Yamamoto, T. W. Hambley, Dalton Trans. 2007, 3983.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVWit77N&md5=6f20cd491c0a1499f145c2e64832efb5CAS | 17828357PubMed |

[13]  L. Grøndahl, A. Hammershøi, A. M. Sargeson, V. J. Thom, Inorg. Chem. 1997, 36, 5396.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  Y. Z. Voloshin, O. A. Varzatskii, Y. N. Bubnov, Russ. Chem. Bull. 2007, 56, 577.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFartr%2FJ&md5=b4cb5cd80367fcd9e00195452c949bb8CAS |

[15]  D. Martinez, M. Slifstein, N. Nabulsi, A. Grassetti, N. B. L. Urban, A. Perez, F. Liu, S. Lin, J. Ropchan, X. Mao, L. S. Kegeles, D. C. Shungu, R. E. Carson, Y. Huang, Biol. Psychiatry 2014, 75, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVKksr3N&md5=e83638c40dbf1c8e964936a3818b0357CAS | 24035345PubMed |

[16]  E. Stein, G. C. Mueller, B. Sundaram, Radiol. Clin. N. Am. 2014, 52, 195.
         | Crossref | GoogleScholarGoogle Scholar | 24267718PubMed |

[17]  M. Østergaard, S. J. Pedersen, U. M. Døhn, Best Pract. Res., Clin. Rheumatol. 2008, 22, 1019.
         | Crossref | GoogleScholarGoogle Scholar |

[18]  C. Tilcock, Adv. Drug Deliv. Rev. 1999, 37, 33.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis1alt7g%3D&md5=371203defb8246005828fb1d951e2a59CAS | 10837725PubMed |

[19]  D. R. Anderson, M. J. Duryee, R. P. Garvin, M. D. Boska, G. M. Thiele, L. W. Klassen, Magn. Reson. Imaging 2012, 30, 96.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOgtrvM&md5=853142adb2c8ff817c24365235a38c62CAS | 22056512PubMed |

[20]  H. Ai, Adv. Drug Deliv. Rev. 2011, 63, 772.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovF2jtLw%3D&md5=7eb83dfd9b4e3caf29a258a3af3328f7CAS | 21554908PubMed |

[21]  M. Chruszcz, K. Mikolajczak, N. Mank, K. A. Majorek, P. J. Porebski, W. Minor, Biochim. Biophys. Acta 2013, 1830, 5375.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVyqsLrO&md5=26180528de2a5d00c583e06cffa798afCAS | 23811341PubMed |

[22]  S. Fujiwara, T. Amisaki, Biochim. Biophys. Acta 2013, 1830, 5427.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt12hsLg%3D&md5=1c0a2e718bf2e2b026eceab9bf80f456CAS | 23567799PubMed |

[23]  C. Ha, N. V. Bhagavan, Biochim. Biophys. Acta 2013, 1830, 5486.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnt1ansb0%3D&md5=a6f001d57eb8adcefeee49edf4b545a1CAS | 23602811PubMed |

[24]  J. Reichenwallner, D. Hinderberger, Biochim. Biophys. Acta 2013, 1830, 5382.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1Cktb0%3D&md5=7f32671505a2739548243f67d10f9d69CAS | 23643928PubMed |

[25]  M. Anraku, V. T. G. Chuang, T. Maruyama, M. Otagiri, Biochim. Biophys. Acta 2013, 1830, 5465.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXos12ltro%3D&md5=5ef67a40c267c1537f9fcb7ad9d6c91bCAS | 23644037PubMed |

[26]  H. M. Ueno, H. Urazono, T. Kobayashi, Food Chem. 2014, 145, 90.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1WjsrvF&md5=185af024469eba4a89a49f8f55ec0704CAS | 24128453PubMed |

[27]  Y. Huang, Y. Shuai, H. Li, Z. Gao, Biochim. Biophys. Acta 2014, 1840, 970.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Grt74%3D&md5=bee68bfccfed1848f75d00844a904740CAS | 24252277PubMed |

[28]  C. Hebia, L. Bekale, P. Chanphai, J. Agbebavi, H. A. Tajmir-Riahi, J. Photochem. Photobiol. B 2014, 130, 254.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXislOhu7w%3D&md5=082cfdbb9abcdeb2a1de4591e9c2b3cdCAS | 24362321PubMed |

[29]  X. Li, D. Chen, G. Wang, Y. Lu, Eur. J. Med. Chem. 2013, 70, 22.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOqu7zF&md5=5ec8c77cbb567738e926bacfb5c82205CAS | 24140914PubMed |

[30]  Z. Chen, Y. He, B. Shi, D. Yang, Biochim. Biophys. Acta 2013, 1830, 5515.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1Cqu78%3D&md5=cee558549d3e7a9c210d246cc4fcc0a2CAS | 23644036PubMed |

[31]  J. Lin, Y. Liu, M. Chen, H. Huang, L. Song, J. Lumin. 2014, 146, 114.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2ltLfF&md5=5e32e8eb4479cf6b1959a81bf65ce1cbCAS |

[32]  Q. Ma, H. Bai, C. Wang, G. Xi, Q. Zhang, X. Meng, Y. Chen, J. Li, H. Ma, L. Guo, Int. J. Mass Spectrom. 2014, 357, 34.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFSrsr7E&md5=ca0e8bf2edbf82931a650344d46db45fCAS |

[33]  A. M. Sargeson, Pure Appl. Chem. 1984, 56, 1603.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlsV2ksA%3D%3D&md5=80ecafc3568393a0b792cafe45d3b0f2CAS |