Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Post-pollination capsule development in Eucalyptus globulus seed orchards

S. Suitor A D , B. M. Potts B , P. H. Brown C , A. J. Gracie C and P. L. Gore C
+ Author Affiliations
- Author Affiliations

A Tasmanian Institute of Agricultural Research, School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia.

B School of Plant Science and Cooperative Research Centre for Forestry, University of Tasmania, Private Bag 55, Hobart, Tas. 7001, Australia.

C SeedEnergy, Pty Ltd, Private Bag 55 Hobart, Tas. 7001, Australia.

D Corresponding author. Email: ssuitor@utas.edu.au

Australian Journal of Botany 56(1) 51-58 https://doi.org/10.1071/BT07126
Submitted: 29 June 2007  Accepted: 9 October 2007   Published: 8 February 2008

Abstract

Low capsule set is a major factor limiting seed production in Eucalyptus globulus seed orchards. Trials were conducted in E. globulus seed orchards in Tasmania, Australia, to identify the timing of capsule development and abortion, as well as the influence of pollination type, the number of ovules fertilised and weather events on capsule set. Controlled pollination (CP), mass supplementary pollination (MSP), open pollination (OP) and isolated unpollinated control (UP) treatments were performed on 21 genotypes in an orchard in southern Tasmania in 2004–2005 and on six genotypes in a higher-altitude orchard in north-western Tasmania in 2005–2006. No capsules were set in the UP control treatment, and capsule set was significantly lower following CP than OP and MSP. The major period of capsule abortion occurred between 20 and 80 days after pollination for all pollination methods across both sites, coinciding with the period of capsule growth. A positive correlation between the number of fertilised ovules per aborted capsule and the length of time capsules were held on the tree was recorded. Given that capsule abortion occurred during a period of fruit growth and that capsules with the lowest number of fertilised ovules aborted first, it is argued that fertilisation level and the level of resource competition are major factors determining capsule abortion.


Acknowledgements

This research was funded by SeedEnergy Pty Ltd and an Australian Postgraduate Award to S. Suitor. We thank Marion McGowen, Paul Tilyard, René Vaillancourt, Ross Corkrey, Kelsey Joyce and Gunns Ltd for their assistance.


References


Allen MT, Prusinkiewicz P, DeJong TM (2005) Using L-systems for modelling source–sink interactions, architecture and physiology of growing trees: the L-PEACH model. New Phytologist 166, 869–880.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ayre DJ, Whelan RJ (1989) Factors controlling fruit set in hermaphroditic plants: studies with the Australian Proteaceae. Trends in Ecology & Evolution 4, 267–272.
Crossref | GoogleScholarGoogle Scholar | open url image1

Bawa KS, Webb CJ (1984) Flower, fruit and seed abortion in tropical forest trees: implications for the evolution of paternal and maternal reproductive patterns. American Journal of Botany 71, 736–751.
Crossref | GoogleScholarGoogle Scholar | open url image1

Boland DJ , Brooker MIH , Turnbull JW , Kleinig DA (1980) ‘Eucalyptus seed.’ (Hogbin Poole Pty Ltd: Sydney)

Borralho NMG, Almeida IM, Cotterill PP (1992) Genetic control of growth of young Eucalyptus globulus clones in Portugal. Silvae Genetica 41, 100–105. open url image1

Burd M (1998) ‘Excess’ flower production and selective fruit abortion: a model of potential benefits. Ecology 79, 2123–2132. open url image1

Doust JL , Doust LL (1988) ‘Plant reproductive ecology: patterns and strategies.’ (Oxford University Press: New York)

Dutkowski GW, Potts BM (1999) Geographic patterns of genetic variation in Eucalyptus globulus ssp. globulus and a revised racial classification. Australian Journal of Botany 47, 237–263.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ehrlen J (1990) Why do plants produce surplus flowers? A reserve ovary model. American Naturalist 138, 918–933. open url image1

Eldridge K , Davidson J , Harwood C , van Wyk G (1993) ‘Eucalypt domestication and breeding.’ (Clarendon Press: Oxford)

Fishman S, Genard M (1998) A biophysical model of fruit growth: simulation of seasonal and diurnal dynamics of mass. Plant, Cell & Environment 21, 739–752.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gore PL , Potts BM (1995) The genetic control of flowering time in Eucalyptus globulus, E. nitens and their F1 hybrids. In ‘Eucalypt plantations: improving fibre yield and quality’. (Eds BM Potts, NMG Borralho, JB Reid, RN Cromer, WN Tibbits, CA Raymond) pp. 241–242. (CRC for Temperate Hardwood Forestry: Hobart)

Greaves BL, Borralho NMG, Raymond CA (1997) Breeding objective for plantation eucalypts grown for production of kraft pulp. Forest Science 43, 465–475. open url image1

Griffin AR (2001) Deployment decision, capturing the benefits of tree improvement with clones and seedlings. In ‘IUFRO international symposium: developing the eucalypt of the future’. p. 16. (Instituto Forestal: Valdivia, Chile)

Griffin AR, Moran GF, Fripp YJ (1987) Preferential outcrossing in Eucalyptus regnans F.Muell. Australian Journal of Botany 35, 465–475.
Crossref | GoogleScholarGoogle Scholar | open url image1

Griffin AR, Whiteman P, Rudge T, Burgess IP, Moncur M (1993) Effect of paclobutrazol on flower-bud production and vegetative growth in two species of Eucalyptus. Canadian Journal of Forest Research 23, 640–647.
Crossref | GoogleScholarGoogle Scholar | open url image1

Harbard JL, Griffin AR, Espejo J (1999) Mass controlled pollination of Eucalyptus globulus: a practical reality. Canadian Journal of Forest Research 29, 1457–1463.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hardner CM, Potts BM (1995) Inbreeding depression and changes in variation after selfing in Eucalyptus globulus ssp. globulus. Silvae Genetica 44, 46–54. open url image1

Henton SM, Piller GJ, Gandar PW (1999) A fruit growth model dependent on both carbon supply and inherent fruit characteristics. Annals of Botany 83, 509–514.
Crossref | GoogleScholarGoogle Scholar | open url image1

Hingston AB, Potts BM (1998) Floral visitors of Eucalyptus globulus subsp. globulus in eastern Tasmania. Tasforests 10, 125–139. open url image1

Hingston AB, Potts BM, McQuillan PB (2004) Pollination services provided by various size classes of flower visitors to Eucalyptus globulus ssp. globulus (Myrtaceae). Australian Journal of Botany 52, 353–369.
Crossref | GoogleScholarGoogle Scholar | open url image1

Jordan GJ, Potts BM, Kirkpatrick JB, Gardiner C (1993) Variation in the Eucalyptus globulus complex revisited. Australian Journal of Botany 41, 763–785.
Crossref | GoogleScholarGoogle Scholar | open url image1

Leal AM , Cotterill PP (1997) Mass controlled pollination of Eucalyptus globulus. In ‘IUFRO conference on silviculture and improvement of eucalypts, Brazil’. (Eds AR Higa, E Schaitza, S Gaiad) pp. 256–258. (EMBRAPA)

Lloyd DG (1980) Sexual strategies in plants. 1. An hypothesis of serial adjustment of maternal investment during on reproductive session. New Phytologist 86, 69–78.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lopez GA, Potts BM, Dutkowski GW, Apiolaza LA, Gelid P (2002) Genetic variation and inter-trait correlations in Eucalyptus globulus base population trials in Argentina. Forest Genetics 9, 223–237. open url image1

Marcelis LFM, Heuvelink E, Hofman-Eijer LRB, Den Bakker J, Xue LB (2004) Flower and fruit abortion in sweet pepper in relation to source and sink strength. Journal of Experimental Botany 55, 2261–2268.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

McGowen M (2007) Genetic control of reproductive traits in Eucalyptus globulus. PhD Thesis, University of Tasmania, Hobart.

Medrano M, Guitian P, Guitian J (2000) Patterns of fruit and seed set within inflorescences of Pancratium maritimum (Amaryllidaceae): nonuniform pollination, resource limitation, or architectural effects? American Journal of Botany 87, 493–501.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Parsons M , Gavran M , Davidson J (2006) ‘Australia’s plantations 2006.’ (Department of Agriculture, Fisheries and Forestry: Canberra)

Patterson B, Gore P, Potts BM, Vaillancourt RE (2004a) Advances in pollination techniques for large-scale seed production in Eucalyptus globulus. Australian Journal of Botany 52, 781–788.
Crossref | GoogleScholarGoogle Scholar | open url image1

Patterson B, Vaillancourt RE, Pilbeam DJ, Potts BM (2004b) Factors affecting variation in outcrossing rate in Eucalyptus globulus. Australian Journal of Botany 52, 773–780.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pigeaire A, Seymour M, Delane R, Atkins CA (1992) Partitioning of dry matter into primary branches and pod initiation on the main inflorescences of Lupinus angustifolius. Australian Journal of Agricultural Research 43, 685–696.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pilbeam DJ , Dutkowski GW (2004) Simulation to determine optimal wood quality sampling strategies. In ‘Eucalyptus in a changing world’. (Eds NMG Borralho, JS Pereira, C Marques, J Coutinho, M Madeira, M Tomé) pp. 211–212. (RAIZ, Instituto Investigação de Floresta e Papel: Aveiro, Portugal)

Potts BM (2004) Genetic improvement of eucalypts. In ‘Encyclopedia of forest science’. (Eds J Evans, J Burley, d J Youngquist) pp. 1480–1490. (Elsevier Science: Oxford)

Potts BM, Marsden-Smedley JB (1989) In vitro germination of Eucalyptus pollen: response to variation in boric acid and sucrose. Australian Journal of Botany 37, 429–441.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pound LM, Wallwork MAB, Potts BM, Sedgley M (2002a) Self-incompatibility in Eucalyptus globulus ssp. globulus (Myrtaceae). Australian Journal of Botany 50, 365–372.
Crossref | GoogleScholarGoogle Scholar | open url image1

Pound LM, Wallwork MAB, Potts BM, Sedgley M (2002b) Early ovule development following self- and cross-pollinations in Eucalyptus globulus Labill. ssp. globulus. Annals of Botany 89, 613–620.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rojas Vergara P , Ramirez de Arellano P , Contardo C , Balocchi C , Potts BM (2001) Desarrollo de una metodologia para la produccion de semilla hibrida intra e interespecifica en un huerto semillero clonal de Eucalyptus globulus. In ‘Developing the eucalypt of the future’. p. 88. (INFOR: Valdivia, Chile)

Ruiz R, Garcia-Luis A, Monerri C, Guardiola JL (2001) Carbohydrate availability in relation to fruitlet abscission in citrus. Annals of Botany 87, 805–812.
Crossref | GoogleScholarGoogle Scholar | open url image1

SAS Institute Inc (2003) ‘SAS 9.1 for Windows.’ (SAS Institute: Cary, NC)

Sasse J , Lavery M , O’Sullivan H , Ashton A , Hamilton M (2003) Seed crop management of Eucalyptus globulus—development of seed crops and their readiness to harvest in individual trees. In ‘Eucalypts in Asia’. (Ed. JW Turnbull) pp. 126–132. (ACIAR: Canberra)

Sedgley M , Griffin AR (1989) ‘Sexual reproduction of tree crops.’ (Academic Press Ltd: London)

Stephenson AG (1981) Flower and fruit abortion: proximate causes and ultimate functions. Annual Review of Ecology and Systematics 12, 253–279.
Crossref | GoogleScholarGoogle Scholar | open url image1

Taylor JE, Whitelaw CA (2001) Signals in abscission. New Phytologist 151, 323–339.
Crossref | GoogleScholarGoogle Scholar | open url image1

Trindade H, Boavida LC, Borralho N, Feijo JA (2001) Successful fertilization and seed set from pollination on immature non-dehisced flowers of Eucalyptus globulus. Annals of Botany 87, 469–475.
Crossref | GoogleScholarGoogle Scholar | open url image1

Wardlaw IF (1990) Tansley Review No. 27—the control of carbon partitioning in plants. New Phytologist 116, 341–381.
Crossref | GoogleScholarGoogle Scholar | open url image1

Weijers D, Jurgens G (2005) Auxin and embryo axis formation: the ends in sight? Current Opinion in Plant Biology 8, 32–37.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wesselingh RA (2007) Pollen limitation meets resource allocation: towards a comprehensive methodology. New Phytologist 174, 26–37.
Crossref | GoogleScholarGoogle Scholar | open url image1

Williams DR, Potts BM, Black PG (1999) Testing single visit pollination procedures for Eucalyptus globulus and E. nitens. Australian Forestry 62, 346–352. open url image1