Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Nickel-hyperaccumulating species of Phyllanthus (Phyllanthaceae) from the Philippines

Marilyn O. Quimado A D , Edwino S. Fernando A , Lorele C. Trinidad B and Augustine Doronila C
+ Author Affiliations
- Author Affiliations

A Department of Forest Biological Sciences, College of Forestry and Natural Resources, The University of the Philippines – Los Baños, College, 4031 Laguna, Philippines.

B Electron Microscopy Services Laboratory, National Institute of Molecular Biology and Biotechnology, The University of the Philippines – Los Baños, College, 4031 Laguna, Philippines.

C School of Chemistry, University of Melbourne, Vic. 3010, Australia.

D Corresponding author. Email: moquimado@up.edu.ph; marilyn.quimado@gmail.com

Australian Journal of Botany 63(2) 103-110 https://doi.org/10.1071/BT14284
Submitted: 22 October 2014  Accepted: 8 February 2015   Published: 22 April 2015

Abstract

Botanical exploration on ultramafic sites in Palawan, Surigao and Zambales has resulted in the discovery of a new hypernickelophore species (nickel (Ni) concentration >1%) of Phyllanthus (Phyllanthaceae). This paper reports in detail the Ni uptake of populations of P. erythrotrichus in Candelaria, Masinloc and Santa Cruz, Zambales, and confirms the status of P. securinegoides in Taganito, Surigao del Norte, which had been analysed only through herbarium specimens, and these were compared with a known hypernickelophore, P. balgooyi, which was collected in Narra and Puerto Princesa, Palawan. Nickel content of the dried leaves, stems and root tissues was quantified using atomic absorption spectrophotometer. P. erythrotrichus and P. securinegoides both had more than 10 000 µg g–1 Ni in the leaves, whereas the roots had 1195 µg g–1 and 4636 µg g–1. P. balgooyi accumulated 6319 µg g–1 of Ni in the leaves, whereas the roots had a higher Ni concentration of up to 8116 µg g–1, respectively. All three species had values of translocation factor and enrichment factor of >1.0, implying that all species have great potential in phytoremediation, specifically, phytoextraction of Ni. These three species of Phyllanthus are prominent in ultramafic scrub communities and, hence, should be used in ecological restoration of mined-out Ni lateritic areas. The implications of the unique adaptation of these species are also discussed in relation to a conservation strategy for their natural populations.

Additional keywords: ecological restoration, Phyllanthus balgooyi, P. erythrotrichus, P. securinegoides, phytoextraction, phytoremediation.


References

Airy Shaw HK (1983) ‘The Euphorbiaceae of the Philippines’. (Royal Botanical Gardens, Kew: London)

Alford ER, Pilon-Smits EAH, Paschke MW (2010) Metallophytes – a view from the rhizosphere. Plant and Soil 337, 33–50.
Metallophytes – a view from the rhizosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVWmtbrJ&md5=589a8f069f118086e67098bf21704ac4CAS |

Baillie IC, Evangelista PM, Inciong NB (2000) Differentiation of upland soils on the Palawan ophiolitic complex, Philippines. Catena 39, 283–299.
Differentiation of upland soils on the Palawan ophiolitic complex, Philippines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFartL4%3D&md5=c763ea36fd3cf493881e161c5e283c53CAS |

Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81–126.

Baker AJM, Proctor J, van Balgooy MMJ, Reeves RD (1992) Hyperaccumulation of nickel by the flora of the ultramafics of Palawan, Republic of the Philippines. In ‘The vegetation of ultramafic (serpentine) soils: Pproceedings of the first international conference on serpentine ecology’. (Eds AJM Baker, J Proctor, RD Reeves, pp. 291–304. (Intercept: Andover, UK)

Balce GR, Alcantara PH, Morante EM, Almogela DH (1976) Tectonic framework of the Philippine archipelago (A review) Philippine Bureau of Mines Report, Manila.

Berazaín R., de la Fuente V, Sánchez-Mata D, Rufo L, Rodríguez N, Amils R (2007) Nickel localization on tissues of hyperaccumulator species of Phyllanthus L. (Euphorbiaceae) from ultramafic areas of Cuba. Biological Trace Element Research 115, 67–86.
Nickel localization on tissues of hyperaccumulator species of Phyllanthus L. (Euphorbiaceae) from ultramafic areas of Cuba.Crossref | GoogleScholarGoogle Scholar | 17406075PubMed |

Boyd RS, Jaffré T (2009) Elemental concentrations of eleven New Caledonian plant species from serpentine soils: elemental correlations and leaf-age effects. Northeastern Naturalist 16, 93–110.
Elemental concentrations of eleven New Caledonian plant species from serpentine soils: elemental correlations and leaf-age effects.Crossref | GoogleScholarGoogle Scholar |

Brooks RR (1987) ‘Serpentine and its vegetation.’ (Croom Helm: Beckenham, UK)

Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium species of indicator plants. Journal of Geochemical Exploration 7, 49–57.
Detection of nickeliferous rocks by analysis of herbarium species of indicator plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXkt1KhsL8%3D&md5=0c18d4fa860a65a0ff100bc0e7f9c7cbCAS |

Brooks RR, Robinson BH (1998) The potential use of hyperaccumulators and other plants in phytomining. In ‘Plants that Hyperaccumulate Heavy Metals: Their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration and Phytomining’ (Ed RR Brooks) pp. 327–356. (CAB International: Wallingford, UK)

Chaney RL (1983) Plant uptake of inorganic waste. In ‘Land treatment of hazardous wastes’. (Eds JF Parr, PB Marsh, JM Kla) pp. 50–76. (Noyes Data Corporation: Park Ridge, NJ)

Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Current Opinion in Biotechnology 8, 279–284.
Phytoremediation of soil metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvFSqtbc%3D&md5=d181c4d202599f26c748ac98ea09ad69CAS | 9206007PubMed |

Chen Y-J, Chen S-H, Huang T-C, Wu M-J (2009) Pollen morphology of Philippine species of Phyllanthus (Phyllanthaceae, Euphorbiaceae s.l.). Blumea 54, 47–58.
Pollen morphology of Philippine species of Phyllanthus (Phyllanthaceae, Euphorbiaceae s.l.).Crossref | GoogleScholarGoogle Scholar |

Cui S, Zhou Q, Chao L (2007) Potential hyper-accumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China. Environmental Geology (Berlin) 51, 1043–1048.
Potential hyper-accumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVyjtQ%3D%3D&md5=350c9327a36a037570665449475c8794CAS |

Doronila AI (2012) Clean and green: plants as metal prospectors in the Philippines. Chemistry in Australia 3, 26–28.

Fernando ES, Suh MH, Lee J, Lee DK (2008) ‘Forest formations of the Philippines.’ (ASEAN–Korea Environmental Cooperation Unit, Seoul National University: Korea)

Fernando ES, Quimado MO, Trinidad LC, Doronila AI (2013) The potential use of indigenous nickel hyperaccumulators in small scale mining in the Philippines. Journal of Degraded and Mining Lands Management 1, 21–26.

Fernando ES, Quimado MO, Doronila AI (2014) Rinorea niccolifera (Violaceae) a new nickel hyperaccumulating species from Luzon Island, Philippines. PhytoKeys 37, 1–13.
Rinorea niccolifera (Violaceae) a new nickel hyperaccumulating species from Luzon Island, Philippines.Crossref | GoogleScholarGoogle Scholar | 24843295PubMed |

Govaerts R, Frodin DG, Radcliffe-Smith A (2000) ‘World checklist and bibliography of Euphorbiaceae. Vol. 4.’ (Royal Botanic Gardens, Kew: London)

Hammer D, Keller C (2002) Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. Journal of Environmental Quality 31, 1561–1569.
Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsFemsL0%3D&md5=bb1652b17c6ab26ff4b836458bbf9bc1CAS | 12371173PubMed |

Jaffré T, Schmid M (1974) Accumulation du nickel par une Rubiacée de Nouvelle-Calédonie: Psychotria douarrei (G.Beauvisage) Däniker. Comptes Rendus de l’Académie des Sciences de Paris Serie D 278, 1727–1730.

Kabata-Pendias A, Pendias H (1992) ‘Trace elements in soil and plants.’ 2nd edn. (CRC Press: Boca Raton, FL)

Kersten WJ, Brooks RR, Reeves RD, Jaffré T (1979) Nickel uptake by New Caledonian species of Phyllanthus. Taxon 28, 529–534.
Nickel uptake by New Caledonian species of Phyllanthus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXhtVOgsbY%3D&md5=928454be42e13f4a12bd14bd2a08c426CAS |

Krämer U (2010) Metal hyperaccumulation in plants. Annual Review of Plant Biology 61, 517–534.
Metal hyperaccumulation in plants.Crossref | GoogleScholarGoogle Scholar | 20192749PubMed |

Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in two Alyssum species. Journal of Environmental Quality 33, 2090–2102.
The effect of pH on metal accumulation in two Alyssum species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVegs7vE&md5=de3115e8f7d536f4c60b6110798dc2d7CAS | 15537931PubMed |

Lindsay WA, Norvell WL (1978) Development of a soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42, 421–428.
Development of a soil test for zinc, iron, manganese, and copper.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXltVKntLs%3D&md5=50242e6636298bb3596beea5ab7251b8CAS |

McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology 14, 277–282.
Phytoextraction of metals and metalloids from contaminated soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVSqsrc%3D&md5=c2f60b28b9dbc1b6b24ece05573fdf2dCAS | 12849780PubMed |

Merrill ED (1923) ‘An enumeration of Philippine flowering plants. Vol. 3.’ (Manila: Bureau of Printing: Manila)

Pilon-Smits EAH (2005) Phytoremediation. Annual Review of Plant Biology 56, 15–39.
Phytoremediation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVarurc%3D&md5=e9bfd771bd2d601ab68bb04128699ff9CAS |

Pollard AJ, Reeves RD, Baker AJM (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Science 217–218, 8–17.
Facultative hyperaccumulation of heavy metals and metalloids.Crossref | GoogleScholarGoogle Scholar | 24467891PubMed |

Proctor J (2003) Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspectives in Plant Ecology, Evolution and Systematics 6, 105–124.
Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East.Crossref | GoogleScholarGoogle Scholar |

Rajakaruna N, Tompkins KM, Pavicevic PG (2006) Phytoremediation: an affordable green technology for the clean-up of metal contaminated sites in Sri Lanka. Ceylon Journal of Science (Biol. Sci.) 350, 25–39.

Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: How and why they do it? And what makes them so interesting? Plant Science 180, 169–181.
Heavy metal hyperaccumulating plants: How and why they do it? And what makes them so interesting?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1agtLzI&md5=a615763f6fdee05c050f18799e229d68CAS | 21421358PubMed |

Reeuwijk LP (1986) ‘Procedures for soil analysis. Technical paper 9.’ (International Soil Reference and Information Center (ISRIC): Wagenigen, The Netherlands)

Reeves RD (1992) The hyperaccumulation of nickel by serpentine plants. In ‘The vegetation of ultramafic (serpentine) soils: proceedings of the first international conference on serpentine ecology’. pp. 253–277. (Eds AJM Baker, J Proctor, RD Reeves) (Intercept: Andover, UK)

Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant and Soil 249, 57–65.
Tropical hyperaccumulators of metals and their potential for phytoextraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsVyrs78%3D&md5=3aa4a3b1fccc31b40f8804ddaf3af344CAS |

Reeves RD (2006) Hyperaccumulation of trace elements by plants. In ‘Phytoremediation of metal-contaminated soils. NATO Science Series (IV): Earth and Environmental Sciences, vol. 68’. (Eds JL Morel, G Echevarria, N Goncharova) pp. 25–52. (Springer: Dordrecht, The Netherlands)

Reeves RD, Baker AJM (2000) Metal-accumulating plants. In ‘Phytoremediation of toxic metals: using plants to clean up the environment’. (Eds I Raskin, BD Ensley) pp. 193–221. (John Wiley and Sons: New York)

Reeves RD, Baker AJM, Borhidi A, Berazain R (1996) Nickel hyperaccumulating plants from the ancient serpentine soils of Cuba. New Phytologist 133, 217–224.
Nickel hyperaccumulating plants from the ancient serpentine soils of Cuba.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkvFKlsLc%3D&md5=fd3caffb6a094cdb888125308d3bafd7CAS |

Reeves RD, Baker AJM, Romero R (2007) The ultramafic flora of the Sta. Elena Peninsula, Costa Rica: a biogeochemical reconnaissance. Journal of Geochemical Exploration 93, 153–159.
The ultramafic flora of the Sta. Elena Peninsula, Costa Rica: a biogeochemical reconnaissance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVSkt7w%3D&md5=a7f201d759ab701884abbd0624b53252CAS |

Susaya JP, Kim K, Asiao VB, Chen Z, Navarrete I (2010) Quantifying nickel in soils and plants in an ultramafic area in Philippines. Environmental Monitoring and Assessment 167, 505–514.
Quantifying nickel in soils and plants in an ultramafic area in Philippines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1Wqsrc%3D&md5=3dc0bea569e135f812b36ca15559917aCAS | 19603280PubMed |

Tamayo RA, Maury RC, Yumul GP, Polve M, Cotten J, Dimalanta CB, Olaguera FO (2004) Subduction-related magmatic imprint of most Philippine ophiolites: implications on the early geodynamic evolution of the Philippine archipelago. Bulletin de la Société Géologique de France 175, 443–460.
Subduction-related magmatic imprint of most Philippine ophiolites: implications on the early geodynamic evolution of the Philippine archipelago.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWlu7vE&md5=1bbfbbb1651eec375edae2b1df3360deCAS |

van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil 362, 319–334.
Hyperaccumulators of metal and metalloid trace elements: facts and fiction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2ks7bF&md5=bee356700f51fe2ae7218429ac2a5674CAS |

van der Ent A, Baker A, Reeves R, Chaney R, Anderson CWN, Meech J, Erskine P, Simonot M-O, Vaughn J, Morel J-L, Echevarria G, Fogliani B, Qiu R-L, Mulligan D (2015) Agromining: farming for metals in the future? Environmental Science & Technology
Agromining: farming for metals in the future?Crossref | GoogleScholarGoogle Scholar |

Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Chaney RL, Ginocchio R, Jaffré T, Johns R, McIntyre T, Purvis OW, Salt DE, Schat H, Zhao FJ, Baker AJM (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restoration Ecology 12, 106–116.
Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation.Crossref | GoogleScholarGoogle Scholar |

Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. The Science of the Total Environment 368, 456–464.
Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFerur8%3D&md5=a64fb28688bef5fe80cfba081e64c7f2CAS | 16600337PubMed |

Yumul GP, Jr, Dimalanta CB, Marquez EJ, Queaño KL (2007) Cretaceous geology of the Philippines: A tectonic perspective. In ‘Paleoclimates in Asia during the Cretaceous: Their variations, causes, and biotic and environmental responses’. (Eds Y-I Lee, I-S Paik, D-K Cheong, M Huh, Y-U Lee), pp. 143−154. (IGCP Project 507 Contribution No. 1, International Geoscience Programme Project 507, Seoul 2007).