Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Effect of supplementation with saponins from Yucca schidigera on ruminal methane production by Pelibuey sheep fed Pennisetum purpureum grass

J. R. Canul-Solis A E , A. T. Piñeiro-Vázquez A , E. G. Briceño-Poot A , A. J. Chay-Canul B , J. A. Alayón-Gamboa C , A. J. Ayala-Burgos A , C. F. Aguilar-Pérez A , F. J. Solorio-Sánchez A , O. A. Castelán-Ortega D and J. C. Ku-Vera A
+ Author Affiliations
- Author Affiliations

A Departamento de Nutrición Animal. Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil km 15.5, C.P. 97100, Mérida, Yucatán, México.

B División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Teapa, km 25, C.P. 86280, Villahermosa, Tabasco, México.

C Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Avenida Rancho Polígono 2-A, Cd. Industrial, C.P. 24500, Lerma Campeche, Campeche, México.

D Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, El Cerrillo, Piedras Blancas, C.P. 50090, Toluca, Estado de México, México.

E Corresponding author. Email: jcanul31@gmail.com

Animal Production Science 54(10) 1834-1837 https://doi.org/10.1071/AN14296
Submitted: 13 March 2014  Accepted: 30 June 2014   Published: 19 August 2014

Abstract

The aim of the work was to determine the effect of increasing concentrations of saponins from Yucca schidigera in the diet on voluntary intake, rumen fermentation and methane (CH4) production in Pelibuey sheep fed a tropical grass Pennisetum purpureum. Five male sheep (32.2 ± 1.1 kg liveweight) were fed chopped P. purpureum grass in a 5 × 5 Latin square design. Sheep were supplemented with 0.0, 1.5, 3.0, 4.5 or 6.0 g per day of saponins from Y. schidigera mixed with ground corn, before the grass was offered. Feed intake, feed refusal and total faecal output were recorded for 20 days of the adaptation period and 5 days of the experimental period. Apparent digestibility of dry matter (DMD), organic matter (OMD), neutral detergent fibre (NDFD) and acid detergent fibre (ADFD) were determined. Ruminal methane emission was estimated using stoichiometric balance and the molar proportion of volatile fatty acids was determined by gas chromatography. Voluntary intake, DMD, OMD, NDFD, ADFD, volatile fatty acids and CH4 emission were not affected (P > 0.05) by increasing inclusion levels of saponins in the ration of sheep. Nonetheless, CH4 production increased as the voluntary intake of NDF augmented. Addition of 6 g of saponins per day as a supplement to Pelibuey sheep fed a tropical grass did not affect voluntary intake and digestibility of DM, OM, NDF and ADF, or ruminal methane production.

Additional keywords: greenhouse gases, rumen fermentation, secondary metabolites, stoichiometry, tropical grass, VFAs.


References

Archimède H, Martin C, Periacarpin F, Rochette Y, Silou Etienne T, Anais C, Doreou M (2014) Methane emission of Blackbelly rams consuming whole sugarcane forage compared with Dichantum sp. hay. Animal Feed Science and Technology 190, 30–37.
Methane emission of Blackbelly rams consuming whole sugarcane forage compared with Dichantum sp. hay.Crossref | GoogleScholarGoogle Scholar |

Bautista F, Palacio G (2005) ‘Caracterización y manejo de los suelos de la península de Yucatán: implicaciones agropecuarias, forestales y ambientales.’ (Universidad Autónoma de Campeche, Universidad Autónoma de Yucatán, Instituto de Ecología)

Cardozo PW, Calsamiglia S, Ferret A, Kamel C (2004) Effects of natural plant extracts on ruminal protein degradation and fermentation profiles in continuous culture. Journal of Animal Science 82, 3230–3236.

Ellis J, Dijkstra J, France J, Parsons AJ, Edwards GR, Rasmussen S, Kebreab E, Bannink A (2012) Effect of high-sugar grasses on methane emissions simulated using a dynamic model. Journal of Dairy Science 95, 272–285.
Effect of high-sugar grasses on methane emissions simulated using a dynamic model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1OlsrjK&md5=2dc4ce0ed807d1b3b8e41d798a921d0dCAS |

Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G (2013) ‘Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities.’ Food and Agriculture Organization of the United Nations (FAO): Rome, Italy.

Goel G, Makkar PSH (2012) Methane mitigation from ruminants using tannins and saponins. Tropical Animal Health and Production 44, 729–739.
Methane mitigation from ruminants using tannins and saponins.Crossref | GoogleScholarGoogle Scholar |

Goel G, Makkar PSH, Becker K (2008) Effects of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L) seeds and their extracts on partitioning of nutrients from roughage- and concentrate-based feeds to methane. Animal Feed Science and Technology 147, 72–89.
Effects of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L) seeds and their extracts on partitioning of nutrients from roughage- and concentrate-based feeds to methane.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ejtLzK&md5=f2dcb69ec265a6b9525db595dfe1c196CAS |

Holtshausen L, Chaves AV, Beauchemin KA, McGinn SM, McAllister TA, Odongo NE, Cheeke PR, Benchaar C (2009) Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. Journal of Dairy Science 92, 2809–2821.
Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFems7Y%3D&md5=718b94ba1458199779f822fdc9bc6a39CAS |

Hristov AN, Oh J, Firkins JL, Dijstra J, Kebreab E, Waghorn G, Makkar HPS, Adesogan A, Yang W, Lee C, Gerber PJ, Henderson B, Tricarico JM (2013) SPECIAL TOPICS: Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. Journal of Animal Science 91, 5045–5069.
SPECIAL TOPICS: Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslKktrrL&md5=4f67430a31a04d014f12be800c812ad3CAS |

Hu W, Liu J, Wu Y, Guo Y, Ye J (2006) Effects of tea saponins on in vitro ruminal fermentation and growth performance in growing Boer goat. Archives of Animal Nutrition 60, 89–97.
Effects of tea saponins on in vitro ruminal fermentation and growth performance in growing Boer goat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksF2jsg%3D%3D&md5=0c43900a74f1f909e89f2f98230f2315CAS |

Klita PT, Mathison GW, Fenton TW, Hardin RT (1996) Effects of alfalfa root saponins on digestive function in sheep. Journal of Animal Science 74, 1144–1156.

Kurihara M, Magner T, Hunter RA, McCrabb GJ (1999) Methane production and energy partition of cattle in the tropics. The British Journal of Nutrition 81, 227–234.

Lila ZA, Mohammed N, Kanda S, Kamada T, Itabashi H (2003) Effect of sarsaponin on ruminal fermentation with particular reference to methane production in vitro. Journal of Dairy Science 86, 3330–3336.

Makkar HPS, Becker K (1996). Effect of Quillaja saponins on in vitro rumen fermentation. In ‘Saponins Used in Food Agriculture’. (Eds GR Waller and K Yamasaki)

Mao LH, Wang JK, Zhou YY, Liu XJ (2010) Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livestock Science 129, 56–62.
Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs.Crossref | GoogleScholarGoogle Scholar |

Ørskov ER, Flatt WP, Moe PW (1968) Fermentation balance approach to estimate extent of fermentation and efficiency of volatile fatty acid formation in ruminants. Journal of Dairy Science 51, 1429–1435.
Fermentation balance approach to estimate extent of fermentation and efficiency of volatile fatty acid formation in ruminants.Crossref | GoogleScholarGoogle Scholar |

SAS (2002) ‘SAS/STAT. Software, Version 9.00’. (SAS Institute Inc.: Cary, NC)

Teferedegne B, Mcinthosh F, Osuji PO, Odenyo A, Wallace RJ (1999) Influence of foliage from different accessions of the subtropical leguminous tree, Sesbania sesban, on rumen protozoa in Ethiopian and Scottish sheep. Animal Feed Science and Technology 78, 11–20.
Influence of foliage from different accessions of the subtropical leguminous tree, Sesbania sesban, on rumen protozoa in Ethiopian and Scottish sheep.Crossref | GoogleScholarGoogle Scholar |

Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fibre and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 3583–3597.
Methods for dietary fiber, neutral detergent fibre and nonstarch polysaccharides in relation to animal nutrition.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2FnvVCltA%3D%3D&md5=1b837d0361716b7c813fff797a7701e0CAS |

Zhou YY, Mao HL, Jiang F, Wang JK, Liu JX, McSweeney CS (2011) Inhibition of rumen methanogenesis by tea saponins with reference to fermentation pattern and microbial communities in Hu sheep. Animal Feed Science and Technology 166–167, 93–100.
Inhibition of rumen methanogenesis by tea saponins with reference to fermentation pattern and microbial communities in Hu sheep.Crossref | GoogleScholarGoogle Scholar |