Register      Login
Emu Emu Society
Journal of BirdLife Australia
ROWLEY REVIEW

ROWLEY REVIEW. Sex determination in birds: a review

Craig A. Smith
+ Author Affiliations
- Author Affiliations

Comparative Development Group, Murdoch Children’s Research Institute and University of Melbourne, Department of Paediatrics, Royal Children’s Hospital, Parkville, Vic. 3052, Australia. Email: craig.smith@mcri.edu.au

Emu 110(4) 364-377 https://doi.org/10.1071/MU10030
Submitted: 28 April 2010  Accepted: 5 August 2010   Published: 30 November 2010

Abstract

In birds, sex determination occurs at fertilisation by the inheritance of sex chromosomes. This review summarises our current understanding of sex determination in birds, with emphasis on the molecular genetics of male versus female development during embryonic life. Recent studies in the Chicken (Gallus gallus domesticus) have revealed some remarkable features of avian sex determination, such as the finding that sex appears to be determined autonomously within cells throughout the body, and the demonstration that the key, sex-linked gene, DMRT1, is required for testis formation and hence male development. However, despite these recent advances, the mechanism of avian sex determination is still not entirely clear. Understanding sex determination in birds has important implications for the conservation of threatened species, and for the global poultry industry.


References

Abinawanto, , Shimada, K., Yoshida, K., and Saito, N. (1996). Effects of aromatase inhibitor on sex differentiation and levels of P450 (17 alpha) and P450 arom messenger ribonucleic acid of gonads in chicken embryos. General and Comparative Endocrinology 102, 241–246.
Effects of aromatase inhibitor on sex differentiation and levels of P450 (17 alpha) and P450 arom messenger ribonucleic acid of gonads in chicken embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivV2qtbY%3D&md5=7223417c85823a34ad7d25f269000b8fCAS |

Agate, R. J., Grisham, W., Wade, J., Mann, S., Wingfield, J., Schanen, C., Palotie, A., and Arnold, A. P. (2003). Neural, not gonadal, origin of brain sex differences in a gynandromorphic finch. Proceedings of the National Academy of Sciences of the United States of America 100, 4873–4878.
Neural, not gonadal, origin of brain sex differences in a gynandromorphic finch.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt12ntrY%3D&md5=65c3cf037e0344fac201b0974ed9750aCAS | 12672961PubMed |

Andrews, J. E., Smith, C. A., and Sinclair, A. H. (1997). Sites of estrogen receptor and aromatase expression in the chicken embryo. General and Comparative Endocrinology 108, 182–190.
Sites of estrogen receptor and aromatase expression in the chicken embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntlOhtL8%3D&md5=e72611377a2493a01e761f30d7c9f059CAS | 9356214PubMed |

Arlt, D., Bensch, S., Hansson, B., Hasselquist, D., and Westerdahl, H. (2004). Observation of a ZZW female in a natural population: implications for avian sex determination. Proceedings of the Royal Society of London. Series B. Biological Sciences 271, S249–S251.
Observation of a ZZW female in a natural population: implications for avian sex determination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsVWjs7w%3D&md5=616b390a0be43028ce8e9055201b653cCAS |

Arnold, A. P., Itoh, Y., and Melamed, E. (2008). A bird’s-eye view of sex chromosome dosage compensation. Annual Review of Genomics and Human Genetics 9, 109–127.
A bird’s-eye view of sex chromosome dosage compensation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SnsbnN&md5=53cf48f6806bdcd1ebf9e48d01d6e470CAS | 18489256PubMed |

Bellott, D. W., Skaletsky, H., Pyntikova, T., Mardis, E. R., Graves, T., Kremitzki, C., Brown, L. G., Rozen, S., et al (2010). Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition. Nature 466, 612–616.
Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1aitb8%3D&md5=f064cbffb10441874b0234fed41dfd90CAS | 20622855PubMed |

Capel, B. (1998). Sex in the 90s: SRY and the switch to the male pathway. Annual Review of Physiology 60, 497–523.
Sex in the 90s: SRY and the switch to the male pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXitVOhsb4%3D&md5=dd413ff4228b218e6c3479752e1bb7bdCAS | 9558474PubMed |

Chang, H.-W., Cheng, C.-A., Gu, D.-L., Chang, C.-C., Su, S.-H., Wen, C.-H., Chou, Y.-C., Chou, T.-C., et al (2008). High-throughput avian molecular sexing by SYBR green-based real-time PCR combined with melting curve analysis. BMC Biotechnology 8, 12.
High-throughput avian molecular sexing by SYBR green-based real-time PCR combined with melting curve analysis.Crossref | GoogleScholarGoogle Scholar | 18269737PubMed |

Clinton, M. (1998). Sex determination and gonadal development: a bird’s eye view. Journal of Experimental Zoology 281, 457–465.
Sex determination and gonadal development: a bird’s eye view.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czislegtg%3D%3D&md5=cfd92086c7991ff60a4546bd1e3b8d9eCAS | 9662832PubMed |

Clinton, M., Haines, L., Belloir, B., and McBride, D. (2001). Sexing chick embryos: a rapid and simple protocol. British Poultry Science 42, 134–138.
Sexing chick embryos: a rapid and simple protocol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFSgu7g%3D&md5=37024d12c997a9b97d55421ca30656b3CAS | 11337963PubMed |

Coriat, A. M., Muller, U., Harry, J. L., Uwanogho, D., and Sharpe, P. T. (1993). PCR amplification of SRY-related gene sequences reveals evolutionary conservation of the SRY-box motif. PCR Methods and Applications 2, 218–222.
| 1:CAS:528:DyaK3sXksVagu74%3D&md5=2c2e107b8f552feb896de1acd4536e4bCAS | 8443573PubMed |

Elbrecht, A., and Smith, R. G. (1992). Aromatase enzyme activity and sex determination in chickens. Science 255, 467–470.
Aromatase enzyme activity and sex determination in chickens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhslSlsrk%3D&md5=08e9f40eed76c846fce54685f8ec903bCAS | 1734525PubMed |

Ellegren, H. (1996). First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proceedings of the Royal Society of London. Series B. Biological Sciences 263, 1635–1641.
First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhtVCiu7Y%3D&md5=35567f04e25ed699f043ac7ddb9d38bfCAS |

Ellegren, H. (2000). Evolution of the avian sex chromosomes and their role in sex determination. Trends in Ecology & Evolution 15, 188–192.
Evolution of the avian sex chromosomes and their role in sex determination.Crossref | GoogleScholarGoogle Scholar |

Ellegren, H., Hultin-Rosenberg, L., Brunstrom, B., Dencker, L., Kultima, K., and Scholz, B. (2007). Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes. BMC Biology 5, 40.
Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes.Crossref | GoogleScholarGoogle Scholar | 17883843PubMed |

Ferguson, M. W., and Joanen, T. (1982). Temperature of egg incubation determines sex in Alligator mississippiensis. Nature 296, 850–853.
Temperature of egg incubation determines sex in Alligator mississippiensis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL387ntlaiuw%3D%3D&md5=1ffadf2aadd9f11781e1a2c41300c495CAS | 7070524PubMed |

Fridolfsson, A. K., Cheng, H., Copeland, N. G., Jenkins, N. A., Liu, H. C., Raudsepp, T., Woodage, T., Chowdhary, B., Halverson, J., and Ellegren, H. (1998). Evolution of the avian sex chromosomes from an ancestral pair of autosomes. Proceedings of the National Academy of Sciences of the United States of America 95, 8147–8152.
Evolution of the avian sex chromosomes from an ancestral pair of autosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXks1Wltbs%3D&md5=47e1955e232b5780546c18ab88e9125eCAS | 9653155PubMed |

Fujimoto, T., Ukeshima, A., and Kiyofuji, R. (1976). The origin, migration and morphology of the primordial germ cells in the chick embryo. Anatomical Record 185, 139–153.
The origin, migration and morphology of the primordial germ cells in the chick embryo.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE283gtl2lsg%3D%3D&md5=a1d092a8345fdb2c106bddb446017c48CAS | 945007PubMed |

Gahr, M. (2003). Male Japanese Quails with female brains do not show male sexual behaviors. Proceedings of the National Academy of Sciences of the United States of America 100, 7959–7964.
Male Japanese Quails with female brains do not show male sexual behaviors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt1Wqt7o%3D&md5=ef2c8456a00e9178df470725fce28e4bCAS | 12802009PubMed |

Garcia-Ortiz, J. E., Pelosi, E., Omari, S., Nedorezov, T., Piao, Y., Karmazin, J., Uda, M., Cao, A., et al (2009). Foxl2 functions in sex determination and histogenesis throughout mouse ovary development. BMC Developmental Biology 9, 36.
Foxl2 functions in sex determination and histogenesis throughout mouse ovary development.Crossref | GoogleScholarGoogle Scholar | 19538736PubMed |

Gasc, J. M. (1978). Growth and sexual differentiation in the gonads of chick and duck embryos. Journal of Embryology and Experimental Morphology 44, 1–13.
| 1:STN:280:DyaE1c7nt1yqtg%3D%3D&md5=a539a61af2a4f43b3a44e04b27429d51CAS | 650128PubMed |

Göth, A., and Booth, D. T. (2005). Temperature-dependent sex ratio in a bird. Biology Letters 1, 31–33.
Temperature-dependent sex ratio in a bird.Crossref | GoogleScholarGoogle Scholar | 17148121PubMed |

Govoroun, M. S., Pannetier, M., Pailhoux, E., Cocquet, J., Brillard, J. P., Couty, I., Batellier, F., and Cotinot, C. (2004). Isolation of chicken homolog of the FOXL2 gene and comparison of its expression patterns with those of aromatase during ovarian development. Developmental Dynamics 231, 859–870.
Isolation of chicken homolog of the FOXL2 gene and comparison of its expression patterns with those of aromatase during ovarian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFakur3K&md5=1a9e5a04f183a00850daa25fc3df9d0cCAS | 15517586PubMed |

Griffin, D. K., Robertson, L. B., Tempest, H. G., and Skinner, B. M. (2007). The evolution of the avian genome as revealed by comparative molecular cytogenetics. Cytogenetic and Genome Research 117, 64–77.
The evolution of the avian genome as revealed by comparative molecular cytogenetics.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2svlvVenug%3D%3D&md5=3d9d3e66ced06cb7acbe0cc02d854fb4CAS | 17675846PubMed |

Griffiths, R. (1991). The isolation of conserved DNA sequences related to the human sex-determining region Y gene from the Lesser Black-backed Gull (Larus fuscus). Proceedings of the Royal Society of London. Series B. Biological Sciences 244, 123–128.
The isolation of conserved DNA sequences related to the human sex-determining region Y gene from the Lesser Black-backed Gull (Larus fuscus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXlsFahurk%3D&md5=e9b2e73c79932ea1412a2e0adfc35d77CAS |

Griffiths, R., and Tlwarl, B. (1995). Sex of the last wild Spix’s Macaw. Nature 375, 454.
Sex of the last wild Spix’s Macaw.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtFCgs70%3D&md5=25159e11caac05cc27b92da003fdbd3aCAS | 7777052PubMed |

Griffiths, R., Daan, S., and Dijkstra, C. (1996). Sex identification in birds using two CHD genes. Proceedings of the Royal Society of London. Series B. Biological Sciences 263, 1251–1256.
Sex identification in birds using two CHD genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsFCitLw%3D&md5=326eafc238bdb3b8062c42634889b444CAS |

Griffiths, R., Double, M. C., Orr, K., and Dawson, R. J. (1998). A DNA test to sex most birds. Molecular Ecology 7, 1071–1075.
A DNA test to sex most birds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslGmt7c%3D&md5=865575e8ccef2b7f96e7833bbc857648CAS | 9711866PubMed |

Guioli, S., and Lovell-Badge, R. (2007). PITX2 controls asymmetric gonadal development in both sexes of the chick and can rescue the degeneration of the right ovary. Development 134, 4199–4208.
PITX2 controls asymmetric gonadal development in both sexes of the chick and can rescue the degeneration of the right ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFegsQ%3D%3D&md5=6e8dcb2a3f5d3203556be25b72de6833CAS | 17959721PubMed |

Hamburger, V., and Hamilton, H. L. (1951). A series of normal stages in the development of the chick embryo. Journal of Morphology 88, 49–92.
A series of normal stages in the development of the chick embryo.Crossref | GoogleScholarGoogle Scholar |

Hillier, L. W., Miller, W., Birney, E., Warren, W., Hardison, R. C., Ponting, C. P., Bork, P., Burt, D. W., et al (2004). Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716.
Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVGmtb7M&md5=a93e35816a470a70c5058a182bccd6eeCAS | 15592404PubMed |

Hori, T., Asakawa, S., Itoh, Y., Shimizu, N., and Mizuno, S. (2000). Wpkci, encoding an altered form of PKCI, is conserved widely on the avian W chromosome and expressed in early female embryos: implication of its role in female sex determination. Molecular Biology of the Cell 11, 3645–3660.
| 1:CAS:528:DC%2BD3cXnslWntb8%3D&md5=125c44ff66847c83fc2496465308ffe3CAS | 11029061PubMed |

Hudson, Q. J., Smith, C. A., and Sinclair, A. H. (2005). Aromatase inhibition reduces expression of FOXL2 in the embryonic chicken ovary. Developmental Dynamics 233, 1052–1055.
Aromatase inhibition reduces expression of FOXL2 in the embryonic chicken ovary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtFKgsbc%3D&md5=f4c874f116d5986c83b75f1c1c166febCAS | 15830351PubMed |

Huynen, L., Millar, C. D., and Lambert, D. M. (2002). A DNA test to sex ratite birds. Molecular Ecology 11, 851–856.
A DNA test to sex ratite birds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFahs7o%3D&md5=5456757fb925d0634f1df2fd8838ce70CAS | 11972770PubMed |

Ishimaru, Y., Komatsu, T., Kasahara, M., Katoh-Fukui, Y., Ogawa, H., Toyama, Y., Maekawa, M., Toshimori, K., et al (2008). Mechanism of asymmetric ovarian development in chick embryos. Development 135, 677–685.
Mechanism of asymmetric ovarian development in chick embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsFyhsbg%3D&md5=384d22ecd8cf53b97791a8aa52cd0c1aCAS | 18199582PubMed |

Itoh, Y., Melamed, E., Yang, X., Kampf, K., Wang, S., Yehya, N., Van Nas, A., Replogle, K., et al (2007). Dosage compensation is less effective in birds than in mammals. Journal of Biology 6, 2.
Dosage compensation is less effective in birds than in mammals.Crossref | GoogleScholarGoogle Scholar | 17352797PubMed |

Itoh, Y., Kampf, K., and Arnold, A. P. (2008). Molecular cloning of Zebra Finch W chromosome repetitive sequences: evolution of the avian W chromosome. Chromosoma 117, 111–121.
Molecular cloning of Zebra Finch W chromosome repetitive sequences: evolution of the avian W chromosome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsFGitbo%3D&md5=449de7022fb3ad67fb4cb5a25a292853CAS | 17972090PubMed |

Johnston, C. M., Barnett, M., Sharpe, P. T., Graves, J. A. M., Renfree, M. B., Capel, B., and Mireille, D. (1995). The molecular biology of temperature-dependent sex determination. Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences 350, 297–303.
The molecular biology of temperature-dependent sex determination.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK287isVajtg%3D%3D&md5=5f1e4c15ac0ea4788472fc9689c845acCAS |

Kent, J., Wheatley, S. C., Andrews, J. E., Sinclair, A. H., and Koopman, P. (1996). A male-specific role for Sox9 in vertebrate sex determination. Development 122, 2813–2822.
| 1:CAS:528:DyaK28XlvFCkt7g%3D&md5=b99b080228f8edf17742baeeb0efc69cCAS | 8787755PubMed |

Klein, S., and Ellendorff, F. (2000). Localisation of Xho1 repetitive sequences on autosomes in addition to the W chromosome in chickens and its relevance for sex diagnosis. Animal Genetics 31, 104–109.
Localisation of Xho1 repetitive sequences on autosomes in addition to the W chromosome in chickens and its relevance for sex diagnosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtVyjurk%3D&md5=1f18ad0bb34e53e5bcb34070ebfe0bebCAS | 10782208PubMed |

Kobayashi, A., Chang, H., Chaboissier, M. C., Schedl, A., and Behringer, R. R. (2005). Sox9 in testis determination. Annals of the New York Academy of Sciences 1061, 9–17.
Sox9 in testis determination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVamurg%3D&md5=01d96ece48b06ffb4b2bc8cca29c8c35CAS | 16467253PubMed |

Kodama, H., Saitoh, H., Tone, M., Kuhara, S., Sakaki, Y., and Mizuno, S. (1987). Nucleotide sequences and unusual electrophoretic behavior of the W chromosome-specific repeating DNA units of the domestic fowl, Gallus gallus domesticus. Chromosoma 96, 18–25.
Nucleotide sequences and unusual electrophoretic behavior of the W chromosome-specific repeating DNA units of the domestic fowl, Gallus gallus domesticus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXovVyntA%3D%3D&md5=90c67a0e2fd3d6187e5309a160238adcCAS | 2893693PubMed |

Koopman, P., and Loffler, K. A. (2003). Sex determination: the fishy tale of Dmrt1. Current Biology 13, R177–R179.
Sex determination: the fishy tale of Dmrt1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvFaitLg%3D&md5=70d4965bc2720c77214f36491118ac72CAS | 12620206PubMed |

Koyama, Y., Yamada, D., Saito, Y., Sato, T., Miyai, S., Tasaki, M., Kato, J., Kasumi, T., et al (2007). Sequence analysis of full-length cDNA of sex chromosome-linked novel gene 2d-2F9 in Gallus gallus. Bioscience, Biotechnology, and Biochemistry 71, 561–570.
Sequence analysis of full-length cDNA of sex chromosome-linked novel gene 2d-2F9 in Gallus gallus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivV2itb0%3D&md5=caee668de020f5b9a21f1eb86c596314CAS | 17284846PubMed |

Kuroda, Y., Arai, N., Arita, M., Teranishi, M., Hori, T., Harata, M., and Mizuno, S. (2001). Absence of Z-chromosome inactivation for five genes in male chickens. Chromosome Research 9, 457–468.
Absence of Z-chromosome inactivation for five genes in male chickens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1ektb8%3D&md5=329135b00004a5e02ba8fa0a63f63c1fCAS | 11592480PubMed |

Lin, M., Thorne, M. H., Martin, I. C. A., Sheldon, B. L., and Jones, R. C. (1995). Development of the gonads in the triploid (ZZW and ZZZ) fowl, Gallus domesticus, and comparison with normal diploid males (ZZ) and females (ZW). Reproduction, Fertility and Development 7, 1185–1197.
Development of the gonads in the triploid (ZZW and ZZZ) fowl, Gallus domesticus, and comparison with normal diploid males (ZZ) and females (ZW).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK283kvFeiuw%3D%3D&md5=261a394eda262b11ae0047afde918373CAS |

Logan, M., and Tabin, C. (1998). Targeted gene misexpression in chick limb buds using avian replication-competent retroviruses. Methods (San Diego, Calif.) 14, 407–420.
Targeted gene misexpression in chick limb buds using avian replication-competent retroviruses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjtFant7s%3D&md5=90298cc2d0f3e35ec547607ad3578338CAS | 9608511PubMed |

Mank, J. E., and Ellegren, H. (2007). Parallel divergence and degradation of the avian W sex chromosome. Trends in Ecology & Evolution 22, 389–391.
Parallel divergence and degradation of the avian W sex chromosome.Crossref | GoogleScholarGoogle Scholar |

Maraud, R., Vergnaud, O., and Rashedi, M. (1990). New insights on the mechanism of testis differentiation from the morphogenesis of experimentally induced testes in genetically female chick embryos. American Journal of Anatomy 188, 429–437.
New insights on the mechanism of testis differentiation from the morphogenesis of experimentally induced testes in genetically female chick embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3czmsV2qtg%3D%3D&md5=01616cdec1a3984d77010dacc9c329afCAS | 2392999PubMed |

Marshall Graves, J. A. (2003). Sex and death in birds: a model of dosage compensation that predicts lethality of sex chromosome aneuploids. Cytogenetic and Genome Research 101, 278–282.
Sex and death in birds: a model of dosage compensation that predicts lethality of sex chromosome aneuploids.Crossref | GoogleScholarGoogle Scholar | 14684995PubMed |

Marshall Graves, J. A. (2008). Weird animal genomes and the evolution of vertebrate sex and sex chromosomes. Annual Review of Genetics 42, 565–586.
Weird animal genomes and the evolution of vertebrate sex and sex chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFemtbvO&md5=48ed450bb6750ba10131784652ea4337CAS | 18983263PubMed |

Marshall Graves, J. A., and Shetty, S. (2001). Sex from W to Z: evolution of vertebrate sex chromosomes and sex determining genes. Journal of Experimental Zoology 290, 449–462.
Sex from W to Z: evolution of vertebrate sex chromosomes and sex determining genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntFamsLg%3D&md5=a6ece9ce2c8b41b6fca9ee47a1d2f996CAS | 11555852PubMed |

Matsuda, M., Nagahama, Y., Shinomiya, A., Sato, T., Matsuda, C., Kobayashi, T., Morrey, C. E., Shibata, N., et al (2002). DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417, 559–563.
DMY is a Y-specific DM-domain gene required for male development in the medaka fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktVehtb8%3D&md5=45094fa2a87291a1ff48f9eba6c3b11aCAS | 12037570PubMed |

McBride, D., Sang, H., and Clinton, M. (1997). Expression of Sry-related genes in the developing genital ridge/mesonephros of the chick embryo. Journal of Reproduction and Fertility 109, 59–63.
Expression of Sry-related genes in the developing genital ridge/mesonephros of the chick embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs1Gntb8%3D&md5=677a0257a4ea23ae19bcf68698d2cf76CAS | 9068414PubMed |

McQueen, H. A., and Clinton, M. (2009). Avian sex chromosomes: dosage compensation matters. Chromosome Research 17, 687–697.
Avian sex chromosomes: dosage compensation matters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1WhsLrK&md5=6118b1c4936bd9612ed8edcdc2aa200bCAS | 19802708PubMed |

Melamed, E., and Arnold, A. P. (2007). Regional differences in dosage compensation on the chicken Z chromosome. Genome Biology 8, R202.
Regional differences in dosage compensation on the chicken Z chromosome.Crossref | GoogleScholarGoogle Scholar | 17900367PubMed |

Merchant-Larios, H., Diaz-Hernandez, V., and Marmolejo-Valencia, A. (2010). Gonadal morphogenesis and gene expression in reptiles with temperature-dependent sex determination. Sexual Development 4, 50–61.
Gonadal morphogenesis and gene expression in reptiles with temperature-dependent sex determination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlahu74%3D&md5=3b50a54c145801033d31858ec88196dbCAS | 20090307PubMed |

Mizuno, S., Kunita, R., Nakabayashi, O., Kuroda, Y., Arai, N., Harata, M., Ogawa, A., Itoh, Y., Teranishi, M., and Hori, T. (2002). Z and W chromosomes of chickens: studies on their gene functions in sex determination and sex differentiation. Cytogenetic and Genome Research 99, 236–244.
Z and W chromosomes of chickens: studies on their gene functions in sex determination and sex differentiation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3szms1Srtw%3D%3D&md5=e4975ee7b1e0ad5901fe51a42a19814bCAS | 12900570PubMed |

Morais da Silva, S., Hacker, A., Harley, V., Goodfellow, P., Swain, A., and Lovell-Badge, R. (1996). Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nature Genetics 14, 62–68.
Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xls1Sqtbc%3D&md5=7e147b626058a2b9c5a8708c6c3e5a5fCAS | 8782821PubMed |

Nakabayashi, O., Kikuchi, H., Kikuchi, T., and Mizuno, S. (1998). Differential expression of genes for aromatase and estrogen receptor during the gonadal development in chicken embryos. Journal of Molecular Endocrinology 20, 193–202.
Differential expression of genes for aromatase and estrogen receptor during the gonadal development in chicken embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXislartrw%3D&md5=b3db51ff54a67119d72055ebce75c689CAS | 9584834PubMed |

Nanda, I., Sick, C., Münster, U., Kaspers, B., Schartl, M., Staeheli, P., and Schmid, M. (1998). Sex chromosome linkage of chicken and duck type 1 interferon genes: further evidence of evolutionary conservation of the Z chromosome in birds. Chromosoma 107, 204–210.
Sex chromosome linkage of chicken and duck type 1 interferon genes: further evidence of evolutionary conservation of the Z chromosome in birds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvVyitr8%3D&md5=78d7dc6dabb80b6e1ba79fabd7f48a31CAS | 9639659PubMed |

Nanda, I., Shan, Z., Schartl, M., Burt, D. W., Koehler, M., Nothwang, H., Grutzner, F., Paton, I. R., et al (1999). 300 million years of conserved synteny between chicken Z and human chromosome 9. Nature Genetics 21, 258–259.
300 million years of conserved synteny between chicken Z and human chromosome 9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVCit7k%3D&md5=b9652b8023222ff1fed6551faef691c6CAS | 10080173PubMed |

Nanda, I., Kondo, M., Hornung, U., Asakawa, S., Winkler, C., Shimizu, A., Shan, Z., Haaf, T., et al (2002). A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proceedings of the National Academy of Sciences of the United States of America 99, 11 778–11 783.
A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFWqt78%3D&md5=edc943a7fa6787462397a19a54b58703CAS |

Nanda, I., Schlegelmilch, K., Haaf, T., Schartl, M., and Schmid, M. (2008). Synteny conservation of the Z chromosome in 14 avian species (11 families) supports a role for Z dosage in avian sex determination. Cytogenetic and Genome Research 122, 150–156.
Synteny conservation of the Z chromosome in 14 avian species (11 families) supports a role for Z dosage in avian sex determination.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M%2FktFSgtg%3D%3D&md5=ab7af522ffceffb7ab1ea0387bffc0a3CAS | 19096210PubMed |

Nishida-Umehara, C., Tsuda, Y., Ishijima, J., Ando, J., Fujiwara, A., Matsuda, Y., and Griffin, D. K. (2007). The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds. Chromosome Research 15, 721–734.
The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVChu7%2FF&md5=05bb50d090b5e35c9acb62c90a74a8a8CAS | 17605112PubMed |

Nishikimi, H., Kansaku, N., Saito, N., Usami, M., Ohno, Y., and Shimada, K. (2000). Sex differentiation and mRNA expression of P450c17, P450arom and AMH in gonads of the chicken. Molecular Reproduction and Development 55, 20–30.
Sex differentiation and mRNA expression of P450c17, P450arom and AMH in gonads of the chicken.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvFyntr8%3D&md5=9789a8ca7e1644c247abaa13ec11b6a9CAS | 10602270PubMed |

O’Neill, M., Binder, M., Smith, C., Andrews, J., Reed, K., Smith, M., Millar, C., Lambert, D., and Sinclair, A. (2000). ASW: a gene with conserved avian W-linkage and female specific expression in chick embryonic gonad. Development Genes and Evolution 210, 243–249.
ASW: a gene with conserved avian W-linkage and female specific expression in chick embryonic gonad.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVGlt7o%3D&md5=daa98381c56a58de9b47ae3f8ec2a286CAS | 11180828PubMed |

Ogawa, A., Murata, K., and Mizuno, S. (1998). The location of Z- and W-linked marker genes and sequence on the homomorphic sex chromosomes of the ostrich and the emu. Proceedings of the National Academy of Sciences of the United States of America 95, 4415–4418.
The location of Z- and W-linked marker genes and sequence on the homomorphic sex chromosomes of the ostrich and the emu.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXis1Ohu7s%3D&md5=00b272e47d4a859e6bc2fb192902bb92CAS | 9539751PubMed |

Oreal, E., Pieau, C., Mattei, M. G., Josso, N., Picard, J. Y., Carre-Eusebe, D., and Magre, S. (1998). Early expression of AMH in chicken embryonic gonads precedes testicular SOX9 expression. Developmental Dynamics 212, 522–532.
Early expression of AMH in chicken embryonic gonads precedes testicular SOX9 expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlt1ahs7s%3D&md5=39fa9429b5a137275a62ad04e509a6f2CAS | 9707325PubMed |

Ottolenghi, C., Omari, S., Garcia-Ortiz, J. E., Uda, M., Crisponi, L., Forabosco, A., Pilia, G., and Schlessinger, D. (2005). Foxl2 is required for commitment to ovary differentiation. Human Molecular Genetics 14, 2053–2062.
Foxl2 is required for commitment to ovary differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslyjs7Y%3D&md5=45e2057320f1e2a43082178bc6673021CAS | 15944199PubMed |

Õunap, K., Uibo, O., Zordania, R., Kiho, L., Ilus, T., Õiglane-Shlik, E., and Bartsch, O. (2004). Three patients with 9p deletions including DMRT1 and DMRT2: a girl with XY complement, bilateral ovotestes, and extreme growth retardation, and two XX females with normal pubertal development. American Journal of Medical Genetics. Part A 130A, 415–423.
Three patients with 9p deletions including DMRT1 and DMRT2: a girl with XY complement, bilateral ovotestes, and extreme growth retardation, and two XX females with normal pubertal development.Crossref | GoogleScholarGoogle Scholar | 15481033PubMed |

Pace, H. C., and Brenner, C. (2003). Feminizing chicks: a model for avian sex determination based on titration of Hint enzyme activity and the predicted structure of an Asw-Hint heterodimer. Genome Biology 4, R18.
Feminizing chicks: a model for avian sex determination based on titration of Hint enzyme activity and the predicted structure of an Asw-Hint heterodimer.Crossref | GoogleScholarGoogle Scholar | 12620103PubMed |

Pailhoux, E., Vigier, B., Schibler, L., Cribiu, E. P., Cotinot, C., and Vaiman, D. (2005). Positional cloning of the PIS mutation in goats and its impact on understanding mammalian sex-differentiation. Genetics, Selection, Evolution 37, S55–S64.
Positional cloning of the PIS mutation in goats and its impact on understanding mammalian sex-differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ens7w%3D&md5=6532f1604813ce8a3aaa6270e8ed3868CAS |

Pannetier, M., Fabre, S., Batista, F., Kocer, A., Renault, L., Jolivet, G., Mandon-Pepin, B., Cotinot, C., Veitia, R., and Pailhoux, E. (2006). FOXL2 activates P450 aromatase gene transcription: towards a better characterization of the early steps of mammalian ovarian development. Journal of Molecular Endocrinology 36, 399–413.
FOXL2 activates P450 aromatase gene transcription: towards a better characterization of the early steps of mammalian ovarian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtFSrtL4%3D&md5=f7a27d53662573611c4e8799cc64359cCAS | 16720712PubMed |

Parks, K. P., Seidle, H., Wright, N., Sperry, J. B., Bieganowski, P., Howitz, K., Wright, D. L., and Brenner, C. (2004). Altered specificity of Hint-W123Q supports a role for Hint inhibition by ASW in avian sex determination. Physiological Genomics 20, 12–14.
Altered specificity of Hint-W123Q supports a role for Hint inhibition by ASW in avian sex determination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVKktb8%3D&md5=fd5c12f4b756b327dc83fdc8212e8416CAS | 15507519PubMed |

Raymond, C. S., Shamu, C. E., Shen, M. M., Seifert, K. J., Hirsch, B., Hodgkin, J., and Zarkower, D. (1998). Evidence for evolutionary conservation of sex-determining genes. Nature 391, 691–695.
Evidence for evolutionary conservation of sex-determining genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXht1GmtLw%3D&md5=af5241acbaf08e8aeeea2ef8189f918eCAS | 9490411PubMed |

Raymond, C. S., Kettlewell, J. R., Hirsch, B., Bardwell, V. J., and Zarkower, D. (1999). Expression of Dmrt1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development. Developmental Biology 215, 208–220.
Expression of Dmrt1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmvFyrtb4%3D&md5=6dac2b1013d1ac3a02de51076659c19dCAS | 10545231PubMed |

Raymond, C. S., Murphy, M. W., O’Sullivan, M. G., Bardwell, V. J., and Zarkower, D. (2000). Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes & Development 14, 2587–2595.
Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnslGru70%3D&md5=ab6aca20ada583d31a1364cc9a412017CAS | 11040213PubMed |

Renfree, M. B., and Short, R. V. (1988). Sex determination in marsupials: evidence for a marsupial-eutherian dichotomy. Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences 322, 41–53.
Sex determination in marsupials: evidence for a marsupial-eutherian dichotomy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M3ktV2mtg%3D%3D&md5=321ee207f428c8fae579751b14446fd8CAS |

Rodriguez-Leon, J., Rodriguez Esteban, C., Marti, M., Santiago-Josefat, B., Dubova, I., Rubiralta, X., and Izpisua Belmonte, J. C. (2008). Pitx2 regulates gonad morphogenesis. Proceedings of the National Academy of Sciences of the United States of America 105, 11 242–11 247.
Pitx2 regulates gonad morphogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVShur3N&md5=38e39c206e965114e24cffe8482ca23eCAS |

Saitoh, Y., and Mizuno, S. (1992). Distribution of XhoI and EcoRI family repetitive DNA sequences into separate domains in the chicken W chromosome. Chromosoma 101, 474–477.
Distribution of XhoI and EcoRI family repetitive DNA sequences into separate domains in the chicken W chromosome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvVGqsr4%3D&md5=4fa61cc13aad3802065c1b3dbdffce3bCAS | 1424991PubMed |

Scheib, D. (1983). Effects and role of estrogens in avian gonadal differentiation. Differentiation 23, S87–S92.
| 6444180PubMed |

Schmid, M., Nanda, I., Hoehn, H., Schartl, M., Haaf, T., Buerstedde, J. M., Arakawa, H., Caldwell, R. B., Weigend, S., Burt, D. W., et al (2005). Second report on chicken genes and chromosomes 2005. Cytogenetic and Genome Research 109, 415–479.
Second report on chicken genes and chromosomes 2005.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3mtlSmsw%3D%3D&md5=d649c7f13576204b1ffcf1a3e463901eCAS | 15905640PubMed |

Scholz, B., Kultima, K., Mattsson, A., Axelsson, J., Brunstrom, B., Halldin, K., Stigson, M., and Dencker, L. (2006). Sex-dependent gene expression in early brain development of chicken embryos. BMC Neuroscience 7, 12.
Sex-dependent gene expression in early brain development of chicken embryos.Crossref | GoogleScholarGoogle Scholar | 16480516PubMed |

Sekido, R., and Lovell-Badge, R. (2008). Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453, 930–934.
Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntVCqtbc%3D&md5=0761a98fbe89676c108ff37670d6b26aCAS | 18454134PubMed |

Shan, Z., Nanda, I., Wang, Y., Schmid, M., Vortkamp, A., and Haaf, T. (2000). Sex-specific expression of an evolutionarily conserved male regulatory gene, DMRT1, in birds. Cytogenetics and Cell Genetics 89, 252–257.
Sex-specific expression of an evolutionarily conserved male regulatory gene, DMRT1, in birds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsF2msbk%3D&md5=20c7b5e43d13506757aba8022b6b8aabCAS | 10965136PubMed |

Shetty, S., Griffin, D. K., and Marshall Graves, J. A. (1999). Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Research 7, 289–295.
Comparative painting reveals strong chromosome homology over 80 million years of bird evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltV2jtrk%3D&md5=8d0c8f8a7c130dc8ed09822a3bd776aeCAS | 10461874PubMed |

Shetty, S., Kirby, P., Zarkower, D., and Marshall Graves, J. A. (2002). DMRT1 in a ratite bird: evidence for a role in sex determination and discovery of a putative regulatory element. Cytogenetic and Genome Research 99, 245–251.
DMRT1 in a ratite bird: evidence for a role in sex determination and discovery of a putative regulatory element.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmtVKlu78%3D&md5=a965ec704ca568620b3fa527511c92cdCAS | 12900571PubMed |

Shoemaker, C., Ramsey, M., Queen, J., and Crews, D. (2007). Expression of Sox9, Mis, and Dmrt1 in the gonad of a species with temperature-dependent sex determination. Developmental Dynamics 236, 1055–1063.
Expression of Sox9, Mis, and Dmrt1 in the gonad of a species with temperature-dependent sex determination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltlWnsbo%3D&md5=23f9bf907f82015668932a8cd19a2665CAS | 17326219PubMed |

Smith, C. A., and Sinclair, A. H. (2004). Sex determination: insights from the chicken. BioEssays 26, 120–132.
Sex determination: insights from the chicken.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitVCks7o%3D&md5=0ec65f405aeba88551b7522cebd86ec9CAS | 14745830PubMed |

Smith, C. A., Andrews, J. E., and Sinclair, A. H. (1997). Gonadal sex differentiation in chicken embryos: expression of estrogen receptor and aromatase genes. Journal of Steroid Biochemistry and Molecular Biology 60, 295–302.
Gonadal sex differentiation in chicken embryos: expression of estrogen receptor and aromatase genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksF2it7g%3D&md5=06b90f29b5d3986fcf25ecebad1a90acCAS | 9219920PubMed |

Smith, C. A., McClive, P. J., Western, P. S., Reed, K. J., and Sinclair, A. H. (1999). Conservation of a sex-determining gene. Nature 402, 601–602.
Conservation of a sex-determining gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsVCm&md5=229b0c59c59c9c8cd015695ee7f29204CAS | 10604464PubMed |

Smith, C. A., McClive, P. J., Hudson, Q., and Sinclair, A. H. (2005). Male-specific cell migration into the developing gonad is a conserved process involving PDGF signalling. Developmental Biology 284, 337–350.
Male-specific cell migration into the developing gonad is a conserved process involving PDGF signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1eksr8%3D&md5=c62d547173c77495451a21ba517cb553CAS | 16005453PubMed |

Smith, C. A., Roeszler, K. N., Hudson, Q. J., and Sinclair, A. H. (2007). Avian sex determination: what, when and where? Cytogenetic and Genome Research 117, 165–173.
Avian sex determination: what, when and where?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2svlvVemuw%3D%3D&md5=441fd6f6dd54f163a86fe3ca57663826CAS | 17675857PubMed |

Smith, C. A., Roeszler, K. N., Ohnesorg, T., Cummins, D. M., Farlie, P. G., Doran, T. J., and Sinclair, A. H. (2009a). The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 461, 267–271.
The avian Z-linked gene DMRT1 is required for male sex determination in the chicken.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGiurvN&md5=02254a204d3b59cab23cfa187136a076CAS | 19710650PubMed |

Smith, C. A., Roeszler, K. N., and Sinclair, A. H. (2009b). Genetic evidence against a role for W-linked histidine triad nucleotide binding protein (HINTW) in avian sex determination. International Journal of Developmental Biology 53, 59–67.
Genetic evidence against a role for W-linked histidine triad nucleotide binding protein (HINTW) in avian sex determination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktFGmtrg%3D&md5=b8fe870b688645a554f062c7fff1b7c7CAS | 19123127PubMed |

Stiglec, R., Ezaz, T., and Marshall Graves, J. A. (2007). A new look at the evolution of avian sex chromosomes. Cytogenetic and Genome Research 117, 103–109.
A new look at the evolution of avian sex chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2svlvVemsA%3D%3D&md5=0e8ff9fff846abd85f1f8e5688ff193bCAS | 17675850PubMed |

Takagi, N., and Sasaki, M. (1974). A phylogenetic study of bird karyotypes. Chromosoma 46, 91–120.
A phylogenetic study of bird karyotypes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c3mtl2hug%3D%3D&md5=77fabac68ce67ef183ef077277a5aed9CAS | 4134896PubMed |

Thorne, M. H. (1995). Genetics of poultry reproduction. In ‘Poultry Production’. (Ed. P. Hunton.) pp. 411–434. (Elsevier: Amsterdam.)

Thorne, M. H., Nicholas, F. W., Moran, C., and Sheldon, B. L. (1997). Genetic analysis of triploidy in a selected line of chickens. Journal of Heredity 88, 495–498.
| 1:STN:280:DyaK1c%2FotFahuw%3D%3D&md5=01fbcb8e9010057ba0fe7d715ac30f7cCAS | 9419888PubMed |

Tone, M., Nakano, N., Takao, E., Narisawa, S., and Mizuno, S. (1982). Demonstration of W chromosome-specific repetitive DNA sequences in the domestic fowl, Gallus g. domesticus. Chromosoma 86, 551–569.
Demonstration of W chromosome-specific repetitive DNA sequences in the domestic fowl, Gallus g. domesticus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXivVyksw%3D%3D&md5=82d734361c6797ec41e0d6649be94231CAS | 7172866PubMed |

Tsuda, Y., Nishida-Umehara, C., Ishijima, J., Yamada, K., and Matsuda, Y. (2007). Comparison of the Z and W sex chromosomal architectures in Elegant Crested Tinamou (Eudromia elegans) and Ostrich (Struthio camelus) and the process of sex chromosome differentiation in palaeognathous birds. Chromosoma 116, 159–173.
Comparison of the Z and W sex chromosomal architectures in Elegant Crested Tinamou (Eudromia elegans) and Ostrich (Struthio camelus) and the process of sex chromosome differentiation in palaeognathous birds.Crossref | GoogleScholarGoogle Scholar | 17219176PubMed |

Uhlenhaut, N. H., Jakob, S., Anlag, K., Eisenberger, T., Sekido, R., Kress, J., Treier, A. C., Klugmann, C., et al (2009). Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139, 1130–1142.
Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhslartrs%3D&md5=4806e44815629e05a82b9bb28fc65229CAS | 20005806PubMed |

Vaillant, S., Dorizzi, M., Pieau, C., and Richard-Mercier, N. (2001). Sex reversal and aromatase in chicken. Journal of Experimental Zoology 290, 727–740.
Sex reversal and aromatase in chicken.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXos12qsL4%3D&md5=192afe95a89bd7be9d668e4767cdaf2eCAS | 11748621PubMed |

Vallisneri, M., Quaglia, A., Stagni, A. M., and Zaccanti, F. (1990). Differences between male and female protogonia in chick embryos before sex differentiation of the gonads. Bollettino della Societa Italiana di Biologia Sperimentale 66, 91–98.
| 1:STN:280:DyaK3c3htFOhtA%3D%3D&md5=56e0cf37ed8fddebee0f218ac8c85643CAS | 2322448PubMed |

van Tuinen, M., and Hedges, S. B. (2001). Calibration of avian molecular clocks. Molecular Biology and Evolution 18, 206–213.
| 1:CAS:528:DC%2BD3MXotVOmuw%3D%3D&md5=9715608d8d63a445cadf9d30cc25daceCAS | 11158379PubMed |

Volff, J. N., Kondo, M., and Schartl, M. (2003). Medaka dmY/dmrt1Y is not the universal primary sex-determining gene in fish. Trends in Genetics 19, 196–199.
Medaka dmY/dmrt1Y is not the universal primary sex-determining gene in fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis12ns7s%3D&md5=889c7686b56a3b6578b4ef96e75c1064CAS | 12683972PubMed |

Wang, L. C., Chen, C. T., Lee, H. Y., Li, S. H., Lir, J. T., Chin, S. C., Pu, C. E., and Wang, C. H. (2007). Sexing a wider range of avian species based on two CHD1 introns with a unified reaction condition. Zoo Biology 26, 425–431.
Sexing a wider range of avian species based on two CHD1 introns with a unified reaction condition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlelsrfM&md5=38f6cc3919e86bca0b5afa4d32b380fbCAS | 19360591PubMed |

Yamada, D., Koyama, Y., Komatsubara, M., Urabe, M., Mori, M., Hashimoto, Y., Nii, R., Kobayashi, M., Nakamoto, A., et al (2004). Comprehensive search for chicken W chromosome-linked genes expressed in early female embryos from the female-minus-male subtracted cDNA macroarray. Chromosome Research 12, 741–754.
Comprehensive search for chicken W chromosome-linked genes expressed in early female embryos from the female-minus-male subtracted cDNA macroarray.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVOjsr8%3D&md5=89ddf3741e784fbc1cb61302cb3bb3e0CAS | 15505409PubMed |

Yoshimoto, S., Okada, E., Umemoto, H., Tamura, K., Uno, Y., Nishida-Umehara, C., Matsuda, Y., Takamatsu, N., Shiba, T., and Ito, M. (2008). A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proceedings of the National Academy of Sciences of the United States of America 105, 2469–2474.
A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1Khurk%3D&md5=4e89751a2a7dfc6a05ab5bf8eaeb365cCAS | 18268317PubMed |

Yoshimoto, S., Ikeda, N., Izutsu, Y., Shiba, T., Takamatsu, N., and Ito, M. (2010). Opposite roles of DMRT1 and its W-linked paralogue, DM-W, in sexual dimorphism of Xenopus laevis: implications of a ZZ/ZW-type sex-determining system. Development 137, 2519–2526.
Opposite roles of DMRT1 and its W-linked paralogue, DM-W, in sexual dimorphism of Xenopus laevis: implications of a ZZ/ZW-type sex-determining system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2mt7bJ&md5=b6fe80d229cae589e40a4175711a34ceCAS | 20573695PubMed |

Zaccanti, F., Vallisneri, M., and Quaglia, A. (1990). Early aspects of sex differentiation in the gonads of chick embryos. Differentiation 43, 71–80.
Early aspects of sex differentiation in the gonads of chick embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3czitlCnsw%3D%3D&md5=71fc50d99a23a0f1c7d0e9a3cfc5e413CAS | 2373289PubMed |

Zhang, S. O., Mathur, S., Hattem, G., Tassy, O., and Pourquie, O. (2010). Sex-dimorphic gene expression and ineffective dosage compensation of Z-linked genes in gastrulating chicken embryos. BMC Genomics 11, 13.
Sex-dimorphic gene expression and ineffective dosage compensation of Z-linked genes in gastrulating chicken embryos.Crossref | GoogleScholarGoogle Scholar | 20055996PubMed |

Zhao, D., McBride, D., Nandi, S., McQueen, H. A., McGrew, M. J., Hocking, P. M., Lewis, P. D., Sang, H. M., and Clinton, M. (2010). Somatic sex identity is cell autonomous in the chicken. Nature 464, 237–242.
Somatic sex identity is cell autonomous in the chicken.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFSmtb8%3D&md5=3101dfaec23c7bb26c4c35ca55fac88dCAS | 20220842PubMed |