Register      Login
Animal Production Science Animal Production Science Society
Food, fibre and pharmaceuticals from animals
RESEARCH ARTICLE

Evaluating vitamin D with graded levels of strontium supplementation on broiler chicken performance and mineral composition

L. C. Browning A B C and A. J. Cowieson A
+ Author Affiliations
- Author Affiliations

A Poultry Research Foundation, University of Sydney, Camden, NSW 2570, Australia.

B Poultry CRC, PO Box U242, University of New England, Armidale, NSW 2351, Australia.

C Corresponding author. Email: lbro6652@uni.sydney.edu.au

Animal Production Science 56(1) 70-76 https://doi.org/10.1071/AN14622
Submitted: 5 June 2014  Accepted: 8 September 2014   Published: 15 January 2015

Abstract

In order to examine the interactive effects of strontium and cholecalciferol in broiler nutrition a total of 288 male broiler chickens were fed over 28 days, eight different diets with six replicates comprising of two levels of vitamin D (5000 and 10 000 IU/kg) and four levels of strontium (0, 400, 800 and 1200 mg/kg) provided as strontium carbonate. Vitamin D and strontium produced a significant interaction on growth and feed efficiency with the addition of higher levels of vitamin D ameliorating the negative effects of strontium at 1200 mg/kg. The higher level of vitamin D also improved bodyweight gain (P < 0.05), had no effect on tibia bone composition but reduced calcium, phosphorus, potassium and magnesium retention (P < 0.05). Strontium supplementation produced no advantage to chicken performance but changed tibia bone composition. It was found that calcium and sodium maintained a ratio of ~30 : 1 in tibia bone. Vitamin D and strontium produced a significant physiological interaction and further research is required to elucidate optimum levels of supplementation for commercial broiler chicken production.

Additional keywords: bone, calcium, cholecalciferol, sodium.


References

Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. Journal of Bone and Mineral Research 19, 2012–2020.
Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFChtLfJ&md5=1cf854de43342a32322647d8e804988aCAS | 15537445PubMed |

Anon. (2004) ‘Syracuse Research Corporation toxicological profile for strontium.’ (US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry: Atlanta, GA)

Aviagen Group (Ed.) (2012) ‘Ross 308 broiler nutrition specifications 2012.’ (Aviagen Group: Huntsville, AL)

Browning L, Cowieson A (2014) Effect of vitamin D3 and strontium on performance, nutrient retention, and bone mineral composition in broiler chickens. Animal Production Science 54, 942–949.
Effect of vitamin D3 and strontium on performance, nutrient retention, and bone mineral composition in broiler chickens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpt12mtLw%3D&md5=adbd6a3c5b8f8d6a5bd123f254b54395CAS |

Canalis E, Hott M, Deloffre P, Tsouderos Y, Marie P (1996) The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone 18, 517–523.
The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkslagu7k%3D&md5=24f4d13e6dcbbd18c587521d50e779b2CAS | 8805991PubMed |

Corradino R, Wasserman R (1970) Strontium inhibition of vitamin D3-induced calcium-binding protein (CaBP) and calcium absorption in chick intestine. Experimental Biology and Medicine 133, 960–963.
Strontium inhibition of vitamin D3-induced calcium-binding protein (CaBP) and calcium absorption in chick intestine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXktVWgsLo%3D&md5=f5cc704efcdcb723f07dbe2fba48fc63CAS |

DeLuca HF, Schnoes HK (1976) Metabolism and mechanism of action of vitamin D. Annual Review of Biochemistry 45, 631–666.
Metabolism and mechanism of action of vitamin D.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XkvFSkurk%3D&md5=d1a171cdb349dd689e1456d5350c7864CAS | 183601PubMed |

Fraser D (1980) Regulation of the metabolism of vitamin D. Physiological Reviews 60, 551–613.

Fraser D, Kodicek E (1970) Unique biosynthesis by kidney of a biologically active vitamin D metabolite. Nature 228, 764–766.
Unique biosynthesis by kidney of a biologically active vitamin D metabolite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXntlGnsw%3D%3D&md5=a2d6f2410af0bb96799a503de6d2094aCAS | 4319631PubMed |

Fritts C, Waldroup P (2005) Comparison of cholecalciferol and 25-hydroxycholecalciferol in broiler diets designed to minimize phosphorus excretion. Journal of Applied Poultry Research 14, 156–166.
Comparison of cholecalciferol and 25-hydroxycholecalciferol in broiler diets designed to minimize phosphorus excretion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivVOktbk%3D&md5=6d707b25a05036845b2eec7ef838184fCAS |

Grynpas M, Marie P (1990) Effects of low doses of strontium on bone quality and quantity in rats. Bone 11, 313–319.
Effects of low doses of strontium on bone quality and quantity in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXksVyjtbo%3D&md5=ef81c5dd8eeb1e08e11d4d85cbd071a2CAS | 2252809PubMed |

Gulhan I, Bilgili S, Gunaydin R, Gulhan S, Posaci C (2008) The effect of strontium ranelate on serum insulin like growth factor-1 and leptin levels in osteoporotic post-menopausal women: a prospective study. Archives of Gynecology and Obstetrics 278, 437–441.
The effect of strontium ranelate on serum insulin like growth factor-1 and leptin levels in osteoporotic post-menopausal women: a prospective study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyisbjN&md5=de91e92c2f5189c179016b28a53bb26dCAS | 18322691PubMed |

Harrison HE (1937) The sodium content of bone and other calcified material. The Journal of Biological Chemistry 120, 457–462.

Hurwitz S, Fishman S, Bar A, Talpaz H (1984) Role of the 1, 25-dihydroxycholecalciferol-regulated component of calcium absorption in calcium homeostasis. Progress in Clinical and Biological Research 168, 357–362.

Li Z, Lu WW, Chiu PK, Lam RW, Xu B, Cheung K, Leong JC, Luk KD (2009) Strontium–calcium coadministration stimulates bone matrix osteogenic factor expression and new bone formation in a large animal model. Journal of Orthopaedic Research 27, 758–762.
Strontium–calcium coadministration stimulates bone matrix osteogenic factor expression and new bone formation in a large animal model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFaiurg%3D&md5=8ee648ae7089cb8421f96dd24540376bCAS | 19025756PubMed |

Marie P, Garba M, Hott M, Miravet L (1985) Effect of low doses of stable strontium on bone metabolism in rats. Mineral and Electrolyte Metabolism 11, 5–13.

Marie P, Ammann P, Boivin G, Rey C (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcified Tissue International 69, 121–129.
Mechanisms of action and therapeutic potential of strontium in bone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnslCqur4%3D&md5=bc10a04c8d1e010dcb9e8b9818e75597CAS | 11683526PubMed |

Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. The New England Journal of Medicine 350, 459–468.
The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1Snsw%3D%3D&md5=caf091f0cc334f846fd6e7489fc6bff5CAS | 14749454PubMed |

National Health and Medical Research Council (2004) ‘Australian code of practice for the care and use of animals for scientific purposes.’ 7th edn. (Commonwealth Government of Australia: Canberra)

Nordin BEC (1976) ‘Calcium, phosphate and magnesium metabolism. Clinical physiology and diagnostic procedures.’ (Churchill Livingstone: Edinburgh, Scotland)

Omdahl JL, DeLuca HF (1972) Rachitogenic activity of dietary strontium. I. Inhibition of intestinal calcium absorption and 1,25-dihydroxycholecalciferol synthesis. The Journal of Biological Chemistry 247, 5520–5526.

Peters HL, Hou X, Jones BT (2003) Multi-analyte calibration curve for high-performance liquid chromatography with an inductively coupled plasma carbon emission detector. Applied Spectroscopy 57, 1162–1166.
Multi-analyte calibration curve for high-performance liquid chromatography with an inductively coupled plasma carbon emission detector.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFerurc%3D&md5=ac58b8dced50a265a819151f99f7b8b7CAS | 14611047PubMed |

Reginster JY, Seeman E, De Vernejoul M, Adami S, Compston J, Phenekos C, Devogelaer J, Curiel MD, Sawicki A, Goemaere S (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. The Journal of Clinical Endocrinology and Metabolism 90, 2816–2822.
Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1Wgt78%3D&md5=45c7871aef146d50ff3727fbe33aeadfCAS | 15728210PubMed |

Schlechter NL, Russell SM, Spencer EM, Nicoll CS (1986) Evidence suggesting that the direct growth-promoting effect of growth hormone on cartilage in vivo is mediated by local production of somatomedin. Proceedings of the National Academy of Sciences of the United States of America 83, 7932–7934.
Evidence suggesting that the direct growth-promoting effect of growth hormone on cartilage in vivo is mediated by local production of somatomedin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmtF2hsL0%3D&md5=ee999b2e3d63b063fb130e0227b3b4baCAS | 3464007PubMed |

Schrooten I, Cabrera W, Goodman WG, Dauwe S, Lamberts LV, Marynissen R, Dorriné W, De Broe ME, D’haese PC (1998) Strontium causes osteomalacia in chronic renal failure rats. Kidney International 54, 448–456.
Strontium causes osteomalacia in chronic renal failure rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlt1WntL8%3D&md5=eb30d62910ce67a9ecaf62dc526dd23fCAS | 9690211PubMed |

Scott M, Nesheim M, Young R (1982) ‘Nutrition of the chicken.’ 3rd edn. (ML Scott & Associates: Ithaca, NY)

Shahnazari M, Lang D, Fosmire G, Sharkey N, Mitchell A, Leach R (2007) Strontium administration in young chickens improves bone volume and architecture but does not enhance bone structural and material strength. Calcified Tissue International 80, 160–166.
Strontium administration in young chickens improves bone volume and architecture but does not enhance bone structural and material strength.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivVSgtr8%3D&md5=2640af4553f8daeeff9c671408bb4363CAS | 17340224PubMed |

Shorr E, Carter A (1952) The usefulness of strontium as an adjuvant to calcium in the remineralization of the skeleton in man. Bulletin (Hospital for Joint Diseases (New York, N.Y.)) 13, 59–66.

Steenbock H, Kletzien S, Halpin J (1932) The reaction of the chicken to irradiated ergosterol and irradiated yeast as contrasted with the natural vitamin D of fish liver oils. The Journal of Biological Chemistry 97, 249–264.

Sweeney RA (1989) Generic combustion method for determination of crude protein in feeds: collaborative study. Journal – Association of Official Analytical Chemists 72, 770–774.

Wasserman R, Taylor A (1966) Vitamin D3-induced calcium-binding protein in chick intestinal mucosa. Science 152, 791–793.
Vitamin D3-induced calcium-binding protein in chick intestinal mucosa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XktlWqsbg%3D&md5=2e8a0a39bef5b6fe84eab7c85cb363c4CAS | 17797460PubMed |

Whitehead C, Mccormack H, Mcteir L, Fleming R (2004) High vitamin D3 requirements in broilers for bone quality and prevention of tibial dyschondroplasia and interactions with dietary calcium, available phosphorus and vitamin A. British Poultry Science 45, 425–436.
High vitamin D3 requirements in broilers for bone quality and prevention of tibial dyschondroplasia and interactions with dietary calcium, available phosphorus and vitamin A.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFyqt7w%3D&md5=60edcd234a3ad1d09979b60791a39690CAS | 15327131PubMed |