CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Botany   
Australian Journal of Botany
Journal Banner
  Southern Hemisphere Botanical Ecosystems
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Current Issue
Just Accepted
All Issues
Special Issues
Turner Review Series
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 56(8)

Elevated CO2 and warming impacts on flowering phenology in a southern Australian grassland are related to flowering time but not growth form, origin or longevity

Mark J. Hovenden A C, Amity L. Williams A, Jane Kongstad Pedersen B, Jacqueline K. Vander Schoor A, Karen E. Wills A

A School of Plant Science, University of Tasmania, Hobart, Tasmania 7001, Australia.
B Forest and Landscape Denmark, University of Copenhagen, Hørsholm, Denmark.
C Corresponding author. Email: Mark.Hovenden@utas.edu.au
 
PDF (314 KB) $25
 Export Citation
 Print
  


Abstract

Flowering is a critical stage in plant life cycles, and changes in phenology might alter processes at the species, community and ecosystem levels. Therefore, likely flowering-time responses to global-change drivers are needed for predictions of global-change impacts on natural and managed ecosystems. Predicting responses of species to global changes would be simplified if functional, phylogenetic or biogeographical traits contributed substantially to a species’ response. Here we investigate the role of growth form (grass, graminoid, forb, subshrub), longevity (annual, perennial), origin (native, exotic) and flowering time in determining the impact of elevated [CO2] (550 μmol mol-1) and infrared warming (mean warming of +2°C) on flowering times of 31 co-occurring species of a range of species-types in a temperate grassland in 2004, 2005 and 2007. Warming reduced time to first flowering by an average of 20.3 days in 2004, 2.1 days in 2005 and 7.6 days in 2007; however, the response varied among species and was unrelated to growth form, origin or longevity. Elevated [CO2] did not alter flowering times; neither was there any [CO2] by species-type interaction. However, both warming and elevated [CO2] tended to have a greater effect on later-flowering species, with time to first flowering of later-flowering species being reduced by both elevated [CO2] (P < 0.001) and warming (P < 0.001) to a greater extent than that of earlier-flowering species. These results have ramifications for our predictions of community and ecosystem interactions in native grasslands in response to global change.

   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014