CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Botany   
Australian Journal of Botany
Journal Banner
  Southern Hemisphere Botanical Ecosystems
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Current Issue
Just Accepted
All Issues
Special Issues
Turner Review Series
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 59(7)

Cycads show no stomatal-density and index response to elevated carbon dioxide and subambient oxygen

Matthew Haworth A C , Annmarie Fitzgerald B and Jennifer C. McElwain B

A CNR – Istituto di Biometeorologia (IBIMET), Via Giovanni Caproni 8, 50145 Firenze, Italy.
B School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
C Corresponding author. Email: matthew.haworth@hotmail.com

Australian Journal of Botany 59(7) 630-639 http://dx.doi.org/10.1071/BT11009
Submitted: 11 January 2011  Accepted: 23 September 2011   Published: 23 November 2011


 
PDF (1 MB) $25
 Supplementary Material
 Export Citation
 Print
  
Abstract

The stomatal density (SD) and index (SI) of fossil plants are widely used in reconstructing palaeo-atmospheric CO2 concentration (palaeo-[CO2]). These stomatal reconstructions depend on the inverse relationship between atmospheric CO2 concentration ([CO2]) and SD and/or SI. Atmospheric oxygen concentration ([O2]) has also varied throughout earth history, influencing photosynthesis via the atmospheric CO2 : O2 ratio, and possibly affecting both SD and SI. Cycads formed a major component of Mesozoic floras, and may serve as suitable proxies of palaeo-[CO2]. However, little is known regarding SD and SI responses of modern cycads to [CO2] and [O2]. SD, SI and pore length were measured in six cycad species (Cycas revoluta, Dioon merolae, Lepidozamia hopei, Lepidozamia peroffskyana, Macrozamia miquelii and Zamia integrifolia) grown under elevated [CO2] (1500 ppm) and subambient [O2] (13.0%) in combination and separately, and compared with SD, SI and pore length under control atmospheric conditions of 380 ppm [CO2] and 20.9% [O2]. The cycad species analysed showed no significant SD, SI or pore-length response to changes in [CO2] or [O2].



References

Ainsworth EA, Rogers A, Nelson R, Long SP (2004) Testing the ‘source-sink’ hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agricultural and Forest Meteorology 122, 85–94.
CrossRef |

Archangelsky S, de Seoane LV (2004) Cycadean diversity in the Cretaceous of Patagonia, Argentina. Three new Androstrobus species from the Baquero Group. Review of Palaeobotany and Palynology 131, 1–28.
CrossRef |

Bacon KL, Belcher CM, Hesselbo SP, McElwain JC (2011) The Triassic–Jurassic boundary carbon-isotope excursions expressed in taxonomically identified leaf cuticles. Palaios 26, 461–469.
CrossRef |

Beerling DJ, Chaloner WG (1993) Evolutionary responses of stomatal density to global CO2 change. Biological Journal of the Linnean Society. Linnean Society of London 48, 343–353.

Beerling DJ, Franks PJ (2010) The hidden cost of transpiration. Nature 464, 495–496.
CrossRef | CAS |

Beerling DJ, Kelly CK (1997) Stomatal density responses of temperate woodland pants over the past seven decades of CO2 increase: a comparison of Salisbury (1927) with contemporary data. American Journal of Botany 84, 1572–1583.
CrossRef | CAS |

Beerling DJ, Woodward FI (1996) Palaeo-ecophysiological perspectives on plant responses to global change. Trends in Ecology & Evolution 11, 20–23.
CrossRef | CAS |

Beerling DJ, Woodward FI (1997) Changes in land plant function over the Phanerozoic: reconstructions based on the fossil record. Botanical Journal of the Linnean Society 124, 137–153.

Beerling DJ, McElwain JC, Osborne CP (1998a) Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations. Journal of Experimental Botany 49, 1603–1607.
CrossRef | CAS |

Beerling DJ, Woodward FI, Lomas MR, Wills MA, Quick WP, Valdes PJ (1998b) The influence of carboniferous palaeoatmospheres on plant function: an experimental and modelling assessment. Philosophical Transactions of the Royal Society B-Biological Sciences 353, 131–140.
CrossRef |

Belcher CM, Mander L, Rein G, Jervis FX, Haworth M, Hesselbo SP, Glasspool IJ, McElwain JC (2010) Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nature Geoscience 3, 426–429.
CrossRef | CAS |

Berner RA (2006) GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta 70, 5653–5664.
CrossRef | CAS |

Berner RA (2009) Phanerozoic atmospheric oxygen: new results using the Geocarbsulf Model. American Journal of Science 309, 603–606.
CrossRef | CAS |

Bonis NR, Van Konijnenburg-Van Cittert JHA, Kürschner WM (2010) Changing CO2 conditions during the end-Triassic inferred from stomatal frequency analysis on Lepidopteris ottonis (Goeppert) Schimper and Ginkgoites taeniatus (Braun) Harris. Palaeogeography, Palaeoclimatology, Palaeoecology 295, 146–161.
CrossRef |

Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA (2009) Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings. Biological Sciences 276, 1771–1776.
CrossRef |

Brodribb TJ, Jordan GJ (2008) Internal coordination between hydraulics and stomatal control in leaves. Plant, Cell & Environment 31, 1557–1564.
CrossRef |

Brodribb TJ, McAdam SAM (2011) Passive origins of stomatal control in vascular plants. Science 331, 582–585.
CrossRef | CAS |

Brodribb TJ, Feild TS, Jordan GJ (2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology 144, 1890–1898.
CrossRef | CAS |

Brodribb TJ, McAdam SAM, Jordan GJ, Feild TS (2009) Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants. New Phytologist 183, 839–847.
CrossRef |

Chen LQ, Li CS, Chaloner WG, Beerling DJ, Sun QG, Collinson ME, Mitchell PL (2001) Assessing the potential for the stomatal characters of extant and fossil ginkgo leaves to signal atmospheric CO2 change. American Journal of Botany 88, 1309–1315.
CrossRef | CAS |

Cowan I (1977) Stomatal behaviour and environment. Advances in Botanical Research 4, 117–219.

Delevoryas T (1982) Perspectives on the origin of cycads and cycadeoids. Review of Palaeobotany and Palynology 37, 115–132.
CrossRef |

Doi M, Shimazaki K-i (2008) The stomata of the fern Adiantum capillus-veneris do not respond to CO2 in the dark and open by photosynthesis in guard cells. Plant Physiology 147, 922–930.
CrossRef | CAS |

Falkowski PG, Katz ME, Milligan AJ, Fennel K, Cramer BS, Aubry MP, Berner RA, Novacek MJ, Zapol WM (2005) The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 309, 2202–2204.
CrossRef | CAS |

Farquhar GD, Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90.
CrossRef | CAS |

Franks PJ, Beerling DJ (2009) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences, USA 106, 10343–10347.
CrossRef | CAS |

Franks PJ, Drake PL, Beerling DJ (2009) Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. Plant, Cell & Environment 32, 1737–1748.
CrossRef |

Gray JE, Holroyd GH, van der Lee FM, Bahrami AR, Sijmons PC, Woodward FI, Schuch W, Heterington AM (2000) The HIC signalling pathway links CO2 perception to stomatal development. Nature 408, 302–305.
CrossRef | CAS |

Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126, 457–461.
CrossRef |

Hammer PA, Hopper DA (1997) Experimental design. In ‘Plant growth chamber handbook’. (Eds RW Langhans, TW Tibbitts) pp. 177–187. (Iowa State University: Ames, IA)

Harris TM (1961) The fossil cycads. Palaeontology 4, 313–323.

Harris TM (1964) ‘The Yorkshire Jurassic flora II. Caytoniales, cycadales and pteridosperms.’ (British Museum of Natural History: London)

Haworth M, Hesselbo SP, McElwain JC, Robinson SA, Brunt JW (2005) Mid-Cretaceous pCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae). Geology 33, 749–752.
CrossRef |

Haworth M, Elliott-Kingston C, McElwain J (2011a) The stomatal CO2 proxy does not saturate at high atmospheric CO2 concentrations: evidence from stomatal index responses of Araucariaceae conifers. Oecologia 167, 11–19.
CrossRef |

Haworth M, Elliott-Kingston C, McElwain JC (2011b) Stomatal control as a driver of plant evolution. Journal of Experimental Botany 62, 2419–2423.
CrossRef | CAS |

Haworth M, Gallagher A, Elliott-Kingston C, Raschi A, Marandola D, McElwain JC (2010a) Stomatal index responses of Agrostis canina to carbon dioxide and sulphur dioxide: implications for palaeo-[CO2] using the stomatal proxy. New Phytologist 188, 845–855.
CrossRef |

Haworth M, Heath J, McElwain JC (2010b) Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers. Annals of Botany 105, 411–418.
CrossRef | CAS |

Heath OVS (1949) Studies in stomatal behaviour. V. The role of carbon dioxide in the light response of stomata. Journal of Experimental Botany 1, 29–62.
CrossRef |

Hesselbo SP, Grocke DR, Jenkyns HC, Bjerrum CJ, Farrimond P, Bell HSM, Green OR (2000) Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406, 392–395.
CrossRef | CAS |

Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424, 901–908.
CrossRef | CAS |

Hovenden MJ, Brodribb T (2000) Altitude of origin influences stomatal conductance and therefore maximum assimilation rate in southern beech, Nothofagus cunninghamii. Australian Journal of Plant Physiology 27, 451–456.
| CAS |

Hovenden MJ, Vander Schoor JK (2004) Nature vs nurture in the leaf morphology of southern beech, Nothofagus cunninghamii (Nothofagaceae). New Phytologist 161, 585–594.
CrossRef |

Hu H, Boisson-Dernier A, Israelsson-Nordstrom M, Bohmer M, Xue S, Ries A, Godoski J, Kuhn JM, Schroeder JI (2010) Carbonic anhydrases are upstream regulators of CO2 controlled stomatal movements in guard cells. Nature Cell Biology 12, 87–93.
CrossRef | CAS |

Jenkyns HC (2003) Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world. Philosophical Transactions of the Royal Society of London Series A – Mathematical Physical and Engineering Sciences 361, 1885–1916.
CrossRef |

Jones DL (2002) ‘Cycads of the world: ancient plants in today’s landscape.’ (Smithsonian Books: Washington, DC)

Jones HG (1999) Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant, Cell & Environment 22, 1043–1055.
CrossRef |

Kaiser H (2009) The relation between stomatal aperture and gas exchange under consideration of pore geometry and diffusional resistance in the mesophyll. Plant, Cell & Environment 32, 1091–1098.
CrossRef | CAS |

Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428, 851–854.
CrossRef | CAS |

Körner C, Scheel JA, Bauer H (1979) Maximum leaf diffusive conductance in vascular plants. Photosynthetica 13, 45–82.

Kouwenberg LLR, McElwain JC, Kurschner WM, Wagner F, Beerling DJ, Mayle FE, Visscher H (2003) Stomatal frequency adjustment of four conifer species to historical changes in atmospheric CO2. American Journal of Botany 90, 610–619.
CrossRef |

Kouwenberg L, Wagner R, Kürschner W, Visscher H (2005) Atmospheric CO2 fluctuations during the last millennium reconstructed by stomatal frequency analysis of Tsuga heterophylla needles. Geology 33, 33–36.
CrossRef | CAS |

Kürschner WM (1997) The anatomical diversity of recent and fossil leaves of the durmast oak (Quercus petraea Lieblein/Q. pseudocastanea Goeppert) – implications for their use as biosensors of palaeoatmospheric CO2 levels. Review of Palaeobotany and Palynology 96, 1–30.
CrossRef |

Kürschner WM, Wagner F, Visscher EH, Visscher H (1997) Predicting the response of leaf stomatal frequency to a future CO2-enriched atmosphere: constraints from historical observations. Geologische Rundschau 86, 512–517.
CrossRef |

Kürschner WM, Kvacek Z, Dilcher DL (2008) The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proceedings of the National Academy of Sciences, USA 105, 449–453.
CrossRef |

Lake JA, Woodward FI (2008) Response of stomatal numbers to CO2 and humidity: control by transpiration rate and abscisic acid. New Phytologist 179, 397–404.
CrossRef | CAS |

Llorens L, Osborne CP, Beerling DJ (2009) Water-use responses of ‘living fossil’ conifers to CO2 enrichment in a simulated Cretaceous polar environment. Annals of Botany 104, 179–188.
CrossRef | CAS |

Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany 54, 2393–2401.
CrossRef | CAS |

Mansfield TA, Meidner H (1966) Stomatal opening in light of different wavelengths: effects of blue light independent of carbon dioxide concentration. Journal of Experimental Botany 17, 510–521.
CrossRef |

Marler TE, Willis LE (1997) Leaf gas-exchange characteristics of sixteen cycad species. Journal of the American Society for Horticultural Science 122, 38–42.

Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436, 866–870.
CrossRef | CAS |

McElwain JC (1998) Do fossil plants signal palaeoatmospheric CO2 concentration in the geological past? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 353, 83–96.
CrossRef |

McElwain JC, Beerling DJ, Woodward FI (1999) Fossil plants and global warming at the Triassic–Jurassic boundary. Science 285, 1386–1390.
CrossRef | CAS |

Meidner H (1968) The comparative effects of blue and red light on the stomata of Allium cepa L. and Xanthium pennsylvanicum. Journal of Experimental Botany 19, 146–151.
CrossRef |

Miller-Rushing AJ, Primack RB, Templer PH, Rathbone S, Mukunda S (2009) Long-term relationships among atmospheric CO2, stomata, and intrinsic water use efficiency in individual trees. American Journal of Botany 96, 1779–1786.
CrossRef | CAS |

Miyazawa SI, Livingston NJ, Turpin DH (2006) Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpa × P. deltoides). Journal of Experimental Botany 57, 373–380.
CrossRef | CAS |

Miziorko HM, Llorimer GH (1983) Ribulose-1,5-bisphosphate carboxylase-oxygenase. Annual Review of Biochemistry 52, 507–535.
CrossRef | CAS |

Mott KA, Woodrow IE (2000) Modelling the role of Rubisco activase in limiting non-steady-state photosynthesis. Journal of Experimental Botany 51, 399–406.
CrossRef | CAS |

Muchow RC, Sinclair TR (1989) Epidermal conductance, stomatal density and stomatal size among genotypes of Sorghum bicolor (L) Moench. Plant, Cell & Environment 12, 425–431.
CrossRef |

Oliveras I, Martīnez-Vilata J, Jimenez-Ortiz T, Lledó MJ, Escarre A, Piňol J (2003) Hydraulic properties of Pinus halepensis, Pinus pinea and Tetraclinis articulata in a dune ecosystem of eastern Spain. Plant Ecology 169, 131–141.
CrossRef |

Passalia MG (2009) Cretaceous pCO2 estimation from stomatal frequency analysis of gymnosperm leaves of Patagonia, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 273, 17–24.
CrossRef |

Passalia MG, Del Fueyo G, Archangelsky S (2010) An Early Cretaceous zamiaceous cycad of south west Gondwana: Restrepophyllum nov gen. from Patagonia, Argentina. Review of Palaeobotany and Palynology 161, 137–150.
CrossRef |

Poole I, Kürschner WM (1999) Stomatal density and Index: the practise. In ‘Fossil plants and spores: modern techniques’. (Eds TP Jones, NP Rowe) pp. 257–260. (Geological Society: London)

Pott C, Kerp H, Krings M (2007) Morphology and epidermal anatomy of Nilssonia (cycadalean foliage) from the Upper Triassic of Lunz (Lower Austria). Review of Palaeobotany and Palynology 143, 197–217.
CrossRef |

Radoglou KM, Jarvis PG (1990) Effects of CO2 enrichment on 4 poplar clones. 2. Leaf surface-properties. Annals of Botany 65, 627–632.
| CAS |

Robinson JM (1994) Speculations on carbon dioxide starvation, late tertiary evolution of stomatal regulation and floristic modernization. Plant, Cell & Environment 17, 345–354.
CrossRef |

Rogiers SY, Hardie WJ, Smith JP (2011) Stomatal density of grapevine leaves (Vitis vinifera L.) responds to soil temperature and atmospheric carbon dioxide. Australian Journal of Grape and Wine Research 17, 147–152.
CrossRef |

Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bioscience 47, 235–242.
CrossRef |

Sager JC, McFarlane JC (1997) Radiation. In ‘Plant growth chamber handbook’. (Eds RW Langhans, TW Tibbitts) pp. 1–30. (Iowa State University: Ames, IA)

Smith RY, Greenwood DR, Basinger JF (2010) Estimating paleoatmospheric pCO2 during the Early Eocene climatic optimum from stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 293, 120–131.
CrossRef |

Stults DZ, Wagner-Cremer F, Axsmith BJ (2011) Atmospheric palaeo-CO2 estimates based on Taxodium distichum (Cupressaceae) fossils from the Miocene and Pliocene of eastern North America. Palaeogeography, Palaeoclimatology, Palaeoecology 309, 327–332.
CrossRef |

Van Oosten JJ, Wilkins D, Besford RT (1994) Regulation of the expression of photosynthetic nuclear genes by CO2 is mimicked by regulation by carbohydrates – a mechanism for the acclimation of photosynthesis to high CO2. Plant, Cell & Environment 17, 913–923.
CrossRef |

Van Vuuren MMI, Robinson D, Fitter AH, Chasalow SD, Williamson L, Raven JA (1997) Effects of elevated atmospheric CO2 and soil water availability on root biomass, root length, and N, P and K uptake by wheat. New Phytologist 135, 455–465.
CrossRef |

Wagner F, Below R, DeKlerk P, Dilcher DL, Joosten H, Kurschner WM, Visscher H (1996) A natural experiment on plant acclimation: lifetime stomatal frequency response of an individual tree to annual atmospheric CO2 increase. Proceedings of the National Academy of Sciences, USA 93, 11 705–11 708.
CrossRef | CAS |

Wagner F, Bohncke SJP, Dilcher DL, Kurschner WM, Geel Bv, Visscher H (1999) Century-scale shifts in early Holocene atmospheric CO2 concentration. Science 284, 1971–1973.
CrossRef | CAS |

Wagner F, Visscher H, Kurschner WM, Dilcher DL (2007) Influence of ontogeny and atmospheric CO2 on stomata parameters of Osmunda regalis. Advances in Angiosperm Paleobotany and Paleoclimatic Reconstruction 258, 183–189.

Whitelock LM (2002) ‘The cycads.’ (Timber Press: Portland, OR)

Woodward FI (1987) Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature 327, 617–618.
CrossRef |

Woodward FI, Bazzaz FA (1988) The responses of stomatal density to CO2 partial pressure. Journal of Experimental Botany 39, 1771–1781.
CrossRef |

Woodward FI, Kelly CK (1995) The influence of CO2 concentration on stomatal density. New Phytologist 131, 311–327.
CrossRef |

Xu Z, Zhou G (2008) Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany 59, 3317–3325.
CrossRef | CAS |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014