Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Cycads show no stomatal-density and index response to elevated carbon dioxide and subambient oxygen

Matthew Haworth A C , Annmarie Fitzgerald B and Jennifer C. McElwain B
+ Author Affiliations
- Author Affiliations

A CNR – Istituto di Biometeorologia (IBIMET), Via Giovanni Caproni 8, 50145 Firenze, Italy.

B School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.

C Corresponding author. Email: matthew.haworth@hotmail.com

Australian Journal of Botany 59(7) 630-639 https://doi.org/10.1071/BT11009
Submitted: 11 January 2011  Accepted: 23 September 2011   Published: 23 November 2011

Abstract

The stomatal density (SD) and index (SI) of fossil plants are widely used in reconstructing palaeo-atmospheric CO2 concentration (palaeo-[CO2]). These stomatal reconstructions depend on the inverse relationship between atmospheric CO2 concentration ([CO2]) and SD and/or SI. Atmospheric oxygen concentration ([O2]) has also varied throughout earth history, influencing photosynthesis via the atmospheric CO2 : O2 ratio, and possibly affecting both SD and SI. Cycads formed a major component of Mesozoic floras, and may serve as suitable proxies of palaeo-[CO2]. However, little is known regarding SD and SI responses of modern cycads to [CO2] and [O2]. SD, SI and pore length were measured in six cycad species (Cycas revoluta, Dioon merolae, Lepidozamia hopei, Lepidozamia peroffskyana, Macrozamia miquelii and Zamia integrifolia) grown under elevated [CO2] (1500 ppm) and subambient [O2] (13.0%) in combination and separately, and compared with SD, SI and pore length under control atmospheric conditions of 380 ppm [CO2] and 20.9% [O2]. The cycad species analysed showed no significant SD, SI or pore-length response to changes in [CO2] or [O2].


References

Ainsworth EA, Rogers A, Nelson R, Long SP (2004) Testing the ‘source-sink’ hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agricultural and Forest Meteorology 122, 85–94.
Testing the ‘source-sink’ hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max.Crossref | GoogleScholarGoogle Scholar |

Archangelsky S, de Seoane LV (2004) Cycadean diversity in the Cretaceous of Patagonia, Argentina. Three new Androstrobus species from the Baquero Group. Review of Palaeobotany and Palynology 131, 1–28.
Cycadean diversity in the Cretaceous of Patagonia, Argentina. Three new Androstrobus species from the Baquero Group.Crossref | GoogleScholarGoogle Scholar |

Bacon KL, Belcher CM, Hesselbo SP, McElwain JC (2011) The Triassic–Jurassic boundary carbon-isotope excursions expressed in taxonomically identified leaf cuticles. Palaios 26, 461–469.
The Triassic–Jurassic boundary carbon-isotope excursions expressed in taxonomically identified leaf cuticles.Crossref | GoogleScholarGoogle Scholar |

Beerling DJ, Chaloner WG (1993) Evolutionary responses of stomatal density to global CO2 change. Biological Journal of the Linnean Society. Linnean Society of London 48, 343–353.

Beerling DJ, Franks PJ (2010) The hidden cost of transpiration. Nature 464, 495–496.
The hidden cost of transpiration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvVGlu78%3D&md5=0140b47080c21b7c5e10e77a5c755989CAS |

Beerling DJ, Kelly CK (1997) Stomatal density responses of temperate woodland pants over the past seven decades of CO2 increase: a comparison of Salisbury (1927) with contemporary data. American Journal of Botany 84, 1572–1583.
Stomatal density responses of temperate woodland pants over the past seven decades of CO2 increase: a comparison of Salisbury (1927) with contemporary data.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MnjvVClsA%3D%3D&md5=241078463ccee5ecdcb9c2e192b878bfCAS |

Beerling DJ, Woodward FI (1996) Palaeo-ecophysiological perspectives on plant responses to global change. Trends in Ecology & Evolution 11, 20–23.
Palaeo-ecophysiological perspectives on plant responses to global change.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFeksg%3D%3D&md5=9730e1375d98f0906c30553dec749d7fCAS |

Beerling DJ, Woodward FI (1997) Changes in land plant function over the Phanerozoic: reconstructions based on the fossil record. Botanical Journal of the Linnean Society 124, 137–153.

Beerling DJ, McElwain JC, Osborne CP (1998a) Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations. Journal of Experimental Botany 49, 1603–1607.
Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvVyrtbs%3D&md5=9d17441ae62367b3a947fe914092a90fCAS |

Beerling DJ, Woodward FI, Lomas MR, Wills MA, Quick WP, Valdes PJ (1998b) The influence of carboniferous palaeoatmospheres on plant function: an experimental and modelling assessment. Philosophical Transactions of the Royal Society B-Biological Sciences 353, 131–140.
The influence of carboniferous palaeoatmospheres on plant function: an experimental and modelling assessment.Crossref | GoogleScholarGoogle Scholar |

Belcher CM, Mander L, Rein G, Jervis FX, Haworth M, Hesselbo SP, Glasspool IJ, McElwain JC (2010) Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nature Geoscience 3, 426–429.
Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslSrtrY%3D&md5=4d2b9c48ebb7c1b7c005ef5959a7bf72CAS |

Berner RA (2006) GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta 70, 5653–5664.
GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Wmtb%2FF&md5=c5c346d542754318615d749ef461ccf9CAS |

Berner RA (2009) Phanerozoic atmospheric oxygen: new results using the Geocarbsulf Model. American Journal of Science 309, 603–606.
Phanerozoic atmospheric oxygen: new results using the Geocarbsulf Model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlCjurbI&md5=0950739c6184216c6fc70d585df7b9deCAS |

Bonis NR, Van Konijnenburg-Van Cittert JHA, Kürschner WM (2010) Changing CO2 conditions during the end-Triassic inferred from stomatal frequency analysis on Lepidopteris ottonis (Goeppert) Schimper and Ginkgoites taeniatus (Braun) Harris. Palaeogeography, Palaeoclimatology, Palaeoecology 295, 146–161.
Changing CO2 conditions during the end-Triassic inferred from stomatal frequency analysis on Lepidopteris ottonis (Goeppert) Schimper and Ginkgoites taeniatus (Braun) Harris.Crossref | GoogleScholarGoogle Scholar |

Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA (2009) Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings. Biological Sciences 276, 1771–1776.
Angiosperm leaf vein evolution was physiologically and environmentally transformative.Crossref | GoogleScholarGoogle Scholar |

Brodribb TJ, Jordan GJ (2008) Internal coordination between hydraulics and stomatal control in leaves. Plant, Cell & Environment 31, 1557–1564.
Internal coordination between hydraulics and stomatal control in leaves.Crossref | GoogleScholarGoogle Scholar |

Brodribb TJ, McAdam SAM (2011) Passive origins of stomatal control in vascular plants. Science 331, 582–585.
Passive origins of stomatal control in vascular plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWisbw%3D&md5=8a723727cbfe8122a4cb5ab485ea70b1CAS |

Brodribb TJ, Feild TS, Jordan GJ (2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology 144, 1890–1898.
Leaf maximum photosynthetic rate and venation are linked by hydraulics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVOgs7s%3D&md5=9ab07fbe6753ef52f11f2255ecae8115CAS |

Brodribb TJ, McAdam SAM, Jordan GJ, Feild TS (2009) Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants. New Phytologist 183, 839–847.
Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants.Crossref | GoogleScholarGoogle Scholar |

Chen LQ, Li CS, Chaloner WG, Beerling DJ, Sun QG, Collinson ME, Mitchell PL (2001) Assessing the potential for the stomatal characters of extant and fossil ginkgo leaves to signal atmospheric CO2 change. American Journal of Botany 88, 1309–1315.
Assessing the potential for the stomatal characters of extant and fossil ginkgo leaves to signal atmospheric CO2 change.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MrpvV2mtQ%3D%3D&md5=52383ea293a33a0602871530f12b640cCAS |

Cowan I (1977) Stomatal behaviour and environment. Advances in Botanical Research 4, 117–219.

Delevoryas T (1982) Perspectives on the origin of cycads and cycadeoids. Review of Palaeobotany and Palynology 37, 115–132.
Perspectives on the origin of cycads and cycadeoids.Crossref | GoogleScholarGoogle Scholar |

Doi M, Shimazaki K-i (2008) The stomata of the fern Adiantum capillus-veneris do not respond to CO2 in the dark and open by photosynthesis in guard cells. Plant Physiology 147, 922–930.
The stomata of the fern Adiantum capillus-veneris do not respond to CO2 in the dark and open by photosynthesis in guard cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVyhtLY%3D&md5=4815e44ed8766b2ba90aa5c1d38a113eCAS |

Falkowski PG, Katz ME, Milligan AJ, Fennel K, Cramer BS, Aubry MP, Berner RA, Novacek MJ, Zapol WM (2005) The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 309, 2202–2204.
The rise of oxygen over the past 205 million years and the evolution of large placental mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVeksbnP&md5=d7e20331ac8d1b5a2fab5fe6e478f570CAS |

Farquhar GD, Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90.
A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXksVWrt7w%3D&md5=8a5b9a5560c9e2307cb76f37b5f9a167CAS |

Franks PJ, Beerling DJ (2009) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences, USA 106, 10343–10347.
Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXot1Giurg%3D&md5=48a5ac3f059ba8aaca391fea83e8ba8bCAS |

Franks PJ, Drake PL, Beerling DJ (2009) Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. Plant, Cell & Environment 32, 1737–1748.
Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus.Crossref | GoogleScholarGoogle Scholar |

Gray JE, Holroyd GH, van der Lee FM, Bahrami AR, Sijmons PC, Woodward FI, Schuch W, Heterington AM (2000) The HIC signalling pathway links CO2 perception to stomatal development. Nature 408, 302–305.
The HIC signalling pathway links CO2 perception to stomatal development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVemsb0%3D&md5=9db96cbc344ae6fe173e9a053d3c3b54CAS |

Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126, 457–461.
Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure.Crossref | GoogleScholarGoogle Scholar |

Hammer PA, Hopper DA (1997) Experimental design. In ‘Plant growth chamber handbook’. (Eds RW Langhans, TW Tibbitts) pp. 177–187. (Iowa State University: Ames, IA)

Harris TM (1961) The fossil cycads. Palaeontology 4, 313–323.

Harris TM (1964) ‘The Yorkshire Jurassic flora II. Caytoniales, cycadales and pteridosperms.’ (British Museum of Natural History: London)

Haworth M, Hesselbo SP, McElwain JC, Robinson SA, Brunt JW (2005) Mid-Cretaceous pCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae). Geology 33, 749–752.
Mid-Cretaceous pCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae).Crossref | GoogleScholarGoogle Scholar |

Haworth M, Elliott-Kingston C, McElwain J (2011a) The stomatal CO2 proxy does not saturate at high atmospheric CO2 concentrations: evidence from stomatal index responses of Araucariaceae conifers. Oecologia 167, 11–19.
The stomatal CO2 proxy does not saturate at high atmospheric CO2 concentrations: evidence from stomatal index responses of Araucariaceae conifers.Crossref | GoogleScholarGoogle Scholar |

Haworth M, Elliott-Kingston C, McElwain JC (2011b) Stomatal control as a driver of plant evolution. Journal of Experimental Botany 62, 2419–2423.
Stomatal control as a driver of plant evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVyksLo%3D&md5=2a250b4cab71218010d902e9742553cbCAS |

Haworth M, Gallagher A, Elliott-Kingston C, Raschi A, Marandola D, McElwain JC (2010a) Stomatal index responses of Agrostis canina to carbon dioxide and sulphur dioxide: implications for palaeo-[CO2] using the stomatal proxy. New Phytologist 188, 845–855.
Stomatal index responses of Agrostis canina to carbon dioxide and sulphur dioxide: implications for palaeo-[CO2] using the stomatal proxy.Crossref | GoogleScholarGoogle Scholar |

Haworth M, Heath J, McElwain JC (2010b) Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers. Annals of Botany 105, 411–418.
Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXis1eitL4%3D&md5=f99f0be42a78a22089d56c67ea32e8b6CAS |

Heath OVS (1949) Studies in stomatal behaviour. V. The role of carbon dioxide in the light response of stomata. Journal of Experimental Botany 1, 29–62.
Studies in stomatal behaviour. V. The role of carbon dioxide in the light response of stomata.Crossref | GoogleScholarGoogle Scholar |

Hesselbo SP, Grocke DR, Jenkyns HC, Bjerrum CJ, Farrimond P, Bell HSM, Green OR (2000) Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406, 392–395.
Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlslKnsLw%3D&md5=208b8c0559df527be675286eaba448d3CAS |

Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424, 901–908.
The role of stomata in sensing and driving environmental change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsV2isLw%3D&md5=f7ea4d124d1723f3bfd677b632b4cc53CAS |

Hovenden MJ, Brodribb T (2000) Altitude of origin influences stomatal conductance and therefore maximum assimilation rate in southern beech, Nothofagus cunninghamii. Australian Journal of Plant Physiology 27, 451–456.

Hovenden MJ, Vander Schoor JK (2004) Nature vs nurture in the leaf morphology of southern beech, Nothofagus cunninghamii (Nothofagaceae). New Phytologist 161, 585–594.
Nature vs nurture in the leaf morphology of southern beech, Nothofagus cunninghamii (Nothofagaceae).Crossref | GoogleScholarGoogle Scholar |

Hu H, Boisson-Dernier A, Israelsson-Nordstrom M, Bohmer M, Xue S, Ries A, Godoski J, Kuhn JM, Schroeder JI (2010) Carbonic anhydrases are upstream regulators of CO2 controlled stomatal movements in guard cells. Nature Cell Biology 12, 87–93.
Carbonic anhydrases are upstream regulators of CO2 controlled stomatal movements in guard cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFynurzN&md5=c53bca967631cf5ef1e8ebbae15b9d50CAS |

Jenkyns HC (2003) Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world. Philosophical Transactions of the Royal Society of London Series A – Mathematical Physical and Engineering Sciences 361, 1885–1916.
Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world.Crossref | GoogleScholarGoogle Scholar |

Jones DL (2002) ‘Cycads of the world: ancient plants in today’s landscape.’ (Smithsonian Books: Washington, DC)

Jones HG (1999) Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant, Cell & Environment 22, 1043–1055.
Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces.Crossref | GoogleScholarGoogle Scholar |

Kaiser H (2009) The relation between stomatal aperture and gas exchange under consideration of pore geometry and diffusional resistance in the mesophyll. Plant, Cell & Environment 32, 1091–1098.
The relation between stomatal aperture and gas exchange under consideration of pore geometry and diffusional resistance in the mesophyll.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtValtbfL&md5=ccb00e3ec970e02514f6ed2e9c7d84e2CAS |

Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428, 851–854.
The limits to tree height.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1Crt78%3D&md5=07aad3e2b34118362729535070fd5159CAS |

Körner C, Scheel JA, Bauer H (1979) Maximum leaf diffusive conductance in vascular plants. Photosynthetica 13, 45–82.

Kouwenberg LLR, McElwain JC, Kurschner WM, Wagner F, Beerling DJ, Mayle FE, Visscher H (2003) Stomatal frequency adjustment of four conifer species to historical changes in atmospheric CO2. American Journal of Botany 90, 610–619.
Stomatal frequency adjustment of four conifer species to historical changes in atmospheric CO2.Crossref | GoogleScholarGoogle Scholar |

Kouwenberg L, Wagner R, Kürschner W, Visscher H (2005) Atmospheric CO2 fluctuations during the last millennium reconstructed by stomatal frequency analysis of Tsuga heterophylla needles. Geology 33, 33–36.
Atmospheric CO2 fluctuations during the last millennium reconstructed by stomatal frequency analysis of Tsuga heterophylla needles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsleisb0%3D&md5=c0af4334822c2d9c4336f07e641fe25bCAS |

Kürschner WM (1997) The anatomical diversity of recent and fossil leaves of the durmast oak (Quercus petraea Lieblein/Q. pseudocastanea Goeppert) – implications for their use as biosensors of palaeoatmospheric CO2 levels. Review of Palaeobotany and Palynology 96, 1–30.
The anatomical diversity of recent and fossil leaves of the durmast oak (Quercus petraea Lieblein/Q. pseudocastanea Goeppert) – implications for their use as biosensors of palaeoatmospheric CO2 levels.Crossref | GoogleScholarGoogle Scholar |

Kürschner WM, Wagner F, Visscher EH, Visscher H (1997) Predicting the response of leaf stomatal frequency to a future CO2-enriched atmosphere: constraints from historical observations. Geologische Rundschau 86, 512–517.
Predicting the response of leaf stomatal frequency to a future CO2-enriched atmosphere: constraints from historical observations.Crossref | GoogleScholarGoogle Scholar |

Kürschner WM, Kvacek Z, Dilcher DL (2008) The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proceedings of the National Academy of Sciences, USA 105, 449–453.
The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems.Crossref | GoogleScholarGoogle Scholar |

Lake JA, Woodward FI (2008) Response of stomatal numbers to CO2 and humidity: control by transpiration rate and abscisic acid. New Phytologist 179, 397–404.
Response of stomatal numbers to CO2 and humidity: control by transpiration rate and abscisic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVOgtL4%3D&md5=db21797aa8777bd17eecf1d155141ef6CAS |

Llorens L, Osborne CP, Beerling DJ (2009) Water-use responses of ‘living fossil’ conifers to CO2 enrichment in a simulated Cretaceous polar environment. Annals of Botany 104, 179–188.
Water-use responses of ‘living fossil’ conifers to CO2 enrichment in a simulated Cretaceous polar environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptFCktbY%3D&md5=ab7aadc741a29ad4f12595f82c3c5b7dCAS |

Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany 54, 2393–2401.
Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVert7s%3D&md5=183fc2472bf4b7d59051dd281d113a91CAS |

Mansfield TA, Meidner H (1966) Stomatal opening in light of different wavelengths: effects of blue light independent of carbon dioxide concentration. Journal of Experimental Botany 17, 510–521.
Stomatal opening in light of different wavelengths: effects of blue light independent of carbon dioxide concentration.Crossref | GoogleScholarGoogle Scholar |

Marler TE, Willis LE (1997) Leaf gas-exchange characteristics of sixteen cycad species. Journal of the American Society for Horticultural Science 122, 38–42.

Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436, 866–870.
The ERECTA gene regulates plant transpiration efficiency in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnt1Siu78%3D&md5=8167b386ba996d4ec4c81a327ceee278CAS |

McElwain JC (1998) Do fossil plants signal palaeoatmospheric CO2 concentration in the geological past? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 353, 83–96.
Do fossil plants signal palaeoatmospheric CO2 concentration in the geological past?Crossref | GoogleScholarGoogle Scholar |

McElwain JC, Beerling DJ, Woodward FI (1999) Fossil plants and global warming at the Triassic–Jurassic boundary. Science 285, 1386–1390.
Fossil plants and global warming at the Triassic–Jurassic boundary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslaru7g%3D&md5=90e3444b6fe9b574d34d9156c46c756dCAS |

Meidner H (1968) The comparative effects of blue and red light on the stomata of Allium cepa L. and Xanthium pennsylvanicum. Journal of Experimental Botany 19, 146–151.
The comparative effects of blue and red light on the stomata of Allium cepa L. and Xanthium pennsylvanicum.Crossref | GoogleScholarGoogle Scholar |

Miller-Rushing AJ, Primack RB, Templer PH, Rathbone S, Mukunda S (2009) Long-term relationships among atmospheric CO2, stomata, and intrinsic water use efficiency in individual trees. American Journal of Botany 96, 1779–1786.
Long-term relationships among atmospheric CO2, stomata, and intrinsic water use efficiency in individual trees.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlanu7vJ&md5=3247a2d6f8cb65ca716919afdb2e24b8CAS |

Miyazawa SI, Livingston NJ, Turpin DH (2006) Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpa × P. deltoides). Journal of Experimental Botany 57, 373–380.
Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpa × P. deltoides).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XisFKhuw%3D%3D&md5=cebb8dd03718cddf53331c0e6aac2076CAS |

Miziorko HM, Llorimer GH (1983) Ribulose-1,5-bisphosphate carboxylase-oxygenase. Annual Review of Biochemistry 52, 507–535.
Ribulose-1,5-bisphosphate carboxylase-oxygenase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXkvVCjtLk%3D&md5=71365df7f588d888c936095f27c58e56CAS |

Mott KA, Woodrow IE (2000) Modelling the role of Rubisco activase in limiting non-steady-state photosynthesis. Journal of Experimental Botany 51, 399–406.
Modelling the role of Rubisco activase in limiting non-steady-state photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVKqu7k%3D&md5=b278ae503c80825dad7c6c655dc03b5aCAS |

Muchow RC, Sinclair TR (1989) Epidermal conductance, stomatal density and stomatal size among genotypes of Sorghum bicolor (L) Moench. Plant, Cell & Environment 12, 425–431.
Epidermal conductance, stomatal density and stomatal size among genotypes of Sorghum bicolor (L) Moench.Crossref | GoogleScholarGoogle Scholar |

Oliveras I, Martīnez-Vilata J, Jimenez-Ortiz T, Lledó MJ, Escarre A, Piňol J (2003) Hydraulic properties of Pinus halepensis, Pinus pinea and Tetraclinis articulata in a dune ecosystem of eastern Spain. Plant Ecology 169, 131–141.
Hydraulic properties of Pinus halepensis, Pinus pinea and Tetraclinis articulata in a dune ecosystem of eastern Spain.Crossref | GoogleScholarGoogle Scholar |

Passalia MG (2009) Cretaceous pCO2 estimation from stomatal frequency analysis of gymnosperm leaves of Patagonia, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 273, 17–24.
Cretaceous pCO2 estimation from stomatal frequency analysis of gymnosperm leaves of Patagonia, Argentina.Crossref | GoogleScholarGoogle Scholar |

Passalia MG, Del Fueyo G, Archangelsky S (2010) An Early Cretaceous zamiaceous cycad of south west Gondwana: Restrepophyllum nov gen. from Patagonia, Argentina. Review of Palaeobotany and Palynology 161, 137–150.
An Early Cretaceous zamiaceous cycad of south west Gondwana: Restrepophyllum nov gen. from Patagonia, Argentina.Crossref | GoogleScholarGoogle Scholar |

Poole I, Kürschner WM (1999) Stomatal density and Index: the practise. In ‘Fossil plants and spores: modern techniques’. (Eds TP Jones, NP Rowe) pp. 257–260. (Geological Society: London)

Pott C, Kerp H, Krings M (2007) Morphology and epidermal anatomy of Nilssonia (cycadalean foliage) from the Upper Triassic of Lunz (Lower Austria). Review of Palaeobotany and Palynology 143, 197–217.
Morphology and epidermal anatomy of Nilssonia (cycadalean foliage) from the Upper Triassic of Lunz (Lower Austria).Crossref | GoogleScholarGoogle Scholar |

Radoglou KM, Jarvis PG (1990) Effects of CO2 enrichment on 4 poplar clones. 2. Leaf surface-properties. Annals of Botany 65, 627–632.

Robinson JM (1994) Speculations on carbon dioxide starvation, late tertiary evolution of stomatal regulation and floristic modernization. Plant, Cell & Environment 17, 345–354.
Speculations on carbon dioxide starvation, late tertiary evolution of stomatal regulation and floristic modernization.Crossref | GoogleScholarGoogle Scholar |

Rogiers SY, Hardie WJ, Smith JP (2011) Stomatal density of grapevine leaves (Vitis vinifera L.) responds to soil temperature and atmospheric carbon dioxide. Australian Journal of Grape and Wine Research 17, 147–152.
Stomatal density of grapevine leaves (Vitis vinifera L.) responds to soil temperature and atmospheric carbon dioxide.Crossref | GoogleScholarGoogle Scholar |

Ryan MG, Yoder BJ (1997) Hydraulic limits to tree height and tree growth. Bioscience 47, 235–242.
Hydraulic limits to tree height and tree growth.Crossref | GoogleScholarGoogle Scholar |

Sager JC, McFarlane JC (1997) Radiation. In ‘Plant growth chamber handbook’. (Eds RW Langhans, TW Tibbitts) pp. 1–30. (Iowa State University: Ames, IA)

Smith RY, Greenwood DR, Basinger JF (2010) Estimating paleoatmospheric pCO2 during the Early Eocene climatic optimum from stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 293, 120–131.
Estimating paleoatmospheric pCO2 during the Early Eocene climatic optimum from stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada.Crossref | GoogleScholarGoogle Scholar |

Stults DZ, Wagner-Cremer F, Axsmith BJ (2011) Atmospheric palaeo-CO2 estimates based on Taxodium distichum (Cupressaceae) fossils from the Miocene and Pliocene of eastern North America. Palaeogeography, Palaeoclimatology, Palaeoecology 309, 327–332.
Atmospheric palaeo-CO2 estimates based on Taxodium distichum (Cupressaceae) fossils from the Miocene and Pliocene of eastern North America.Crossref | GoogleScholarGoogle Scholar |

Van Oosten JJ, Wilkins D, Besford RT (1994) Regulation of the expression of photosynthetic nuclear genes by CO2 is mimicked by regulation by carbohydrates – a mechanism for the acclimation of photosynthesis to high CO2. Plant, Cell & Environment 17, 913–923.
Regulation of the expression of photosynthetic nuclear genes by CO2 is mimicked by regulation by carbohydrates – a mechanism for the acclimation of photosynthesis to high CO2.Crossref | GoogleScholarGoogle Scholar |

Van Vuuren MMI, Robinson D, Fitter AH, Chasalow SD, Williamson L, Raven JA (1997) Effects of elevated atmospheric CO2 and soil water availability on root biomass, root length, and N, P and K uptake by wheat. New Phytologist 135, 455–465.
Effects of elevated atmospheric CO2 and soil water availability on root biomass, root length, and N, P and K uptake by wheat.Crossref | GoogleScholarGoogle Scholar |

Wagner F, Below R, DeKlerk P, Dilcher DL, Joosten H, Kurschner WM, Visscher H (1996) A natural experiment on plant acclimation: lifetime stomatal frequency response of an individual tree to annual atmospheric CO2 increase. Proceedings of the National Academy of Sciences, USA 93, 11 705–11 708.
A natural experiment on plant acclimation: lifetime stomatal frequency response of an individual tree to annual atmospheric CO2 increase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmtlansrg%3D&md5=b2aa689089bb6980494f8012f33f86caCAS |

Wagner F, Bohncke SJP, Dilcher DL, Kurschner WM, Geel Bv, Visscher H (1999) Century-scale shifts in early Holocene atmospheric CO2 concentration. Science 284, 1971–1973.
Century-scale shifts in early Holocene atmospheric CO2 concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktVWns7Y%3D&md5=77d103482698e62b0433ae9df6f58cdeCAS |

Wagner F, Visscher H, Kurschner WM, Dilcher DL (2007) Influence of ontogeny and atmospheric CO2 on stomata parameters of Osmunda regalis. Advances in Angiosperm Paleobotany and Paleoclimatic Reconstruction 258, 183–189.

Whitelock LM (2002) ‘The cycads.’ (Timber Press: Portland, OR)

Woodward FI (1987) Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature 327, 617–618.
Stomatal numbers are sensitive to increases in CO2 from preindustrial levels.Crossref | GoogleScholarGoogle Scholar |

Woodward FI, Bazzaz FA (1988) The responses of stomatal density to CO2 partial pressure. Journal of Experimental Botany 39, 1771–1781.
The responses of stomatal density to CO2 partial pressure.Crossref | GoogleScholarGoogle Scholar |

Woodward FI, Kelly CK (1995) The influence of CO2 concentration on stomatal density. New Phytologist 131, 311–327.
The influence of CO2 concentration on stomatal density.Crossref | GoogleScholarGoogle Scholar |

Xu Z, Zhou G (2008) Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. Journal of Experimental Botany 59, 3317–3325.
Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWit73E&md5=1d616d9ddf7f3c0299276939f6ffc0c8CAS |