CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Botany   
Australian Journal of Botany
Journal Banner
  Southern Hemisphere Botanical Ecosystems
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Turner Review Series
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article     |     Next >>   Contents Vol 62(1)

Low-phosphorus conditions affect the nitrogen nutrition and associated carbon costs of two legume tree species from a Mediterranean-type ecosystem

Anathi Magadlela A , Aleysia Kleinert A , Léanne L. Dreyer A and Alex J. Valentine A B

A Botany and Zoology Department, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
B Corresponding author. Email: alexvalentine@mac.com

Australian Journal of Botany 62(1) 1-9 http://dx.doi.org/10.1071/BT13264
Submitted: 29 October 2013  Accepted: 11 February 2014   Published: 14 April 2014


 
PDF (431 KB) $25
 Export Citation
 Print
  
Abstract

The role of phosphorus nutrition in two-legume tree species from the Mediterranean-type ecosystem of the Cape Floristic Region (CFR) in South Africa was investigated. There is very little information about the functional adaptations of nitrogen (N) and phosphorus (P) nutrition in these legume trees growing in nutrient-poor soils. Nodulated Virgilia divaricata and V. oroboides tree saplings were grown in sterilised sand and supplied with Long Ashton nutrient solution, which was modified to contain either sufficient-phosphate (500 µM) or low-phosphate (5 µM) nutrient solution for 90 days. During low-P conditions, the growth of V. divaricata was not affected, whereas V. oroboides showed a decrease in growth. The decrease in V. oroboides under low-P conditions was related to the lower P uptake, which resulted in an alteration in belowground biomass allocation, which consequently affected on the N nutrition and carbon (C) cost of growth. In this regard, V. oroboides plants allocated less biomass to roots and nodules, as a proportion of whole plant growth. The impact of this was a decline in N nutrition, growth respiration and photosynthetic costs in V. oroboides. In contrast, V. divaricata maintained its P concentrations, photosynthetic costs and increased its nodule allocation under low-P conditions, to the benefit of N nutrition. The two CFR tree legumes appear to have different adaptations to low-P conditions, which may influence their N and P acquisition in their naturally low-P environment.

Additional keywords: acidic soils, biological nitrogen, fynbos, nutrient deficiencies fixation, Virgilia.


References

Ainsworth EA, Rogers A, Nelson R, Long SP (2004) Testing the ‘source–sink’ hypothesis of down-regulation of hypothesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agricultural and Forest Meteorology 122, 85–94.
CrossRef |

Al-Niemi TS, Kahn ML, McDermott TR (1998) Phosphorus uptake by bean nodules. Plant and Soil 198, 71–78.
CrossRef | CAS |

Almeida JPF, Hartwig UA, Frehner M, Nösberger J, Lüscher A (2000) Evidence that P deficiency induced N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.). Journal of Experimental Botany 51, 1289–1297.
CrossRef | CAS |

Bazzaz FA (1997) Allocation of resources in plants: state of science and critical questions. In ‘Plant resource allocation’. (Eds FA Bazzaz, J Grace) pp. 1–37. (Academic Press: San Diego, CA)

Bieleski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Annual Review of Plant Physiology 24, 225–252.
CrossRef | CAS |

Bordeleau LM, Prevost D (1994) Nodulation and nitrogen fixation in extreme environments. Plant and Soil 161, 115–125.
CrossRef | CAS |

Correa OS, Barneix AJ (1997) Cellular mechanisms of pH tolerance in Rhizobium loti. World Journal of Microbiology and Biotechnology 13, 153–157.
CrossRef | CAS |

Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant and Soil 245, 35–47.
CrossRef | CAS |

Dinkelaker B, Hengeler C, Marschner H (1995) Distribution and function of proteoid roots and other root clusters. Botanica Acta 108, 183–200.
CrossRef |

Drevon JJ, Hartwig UA (1997) Phosphorus deficiency increases the argon-induced decline of nodule nitrogenase activity in soybean and alfalfa. Planta 201, 463–469.
CrossRef | CAS |

Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology 40, 503–537.
CrossRef | CAS |

Gilbert GA, Knight JD, Vance CP, Allan DL (1999) Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant, Cell and Environment 22, 801–810.
CrossRef | CAS |

Gilroy S, Jones DL (2000) Through form to function: root hair development and nutrition uptake. Trends in Plant Science 5, 56–60.
CrossRef | CAS | PubMed |

Goldblatt P, Manning J (2000) ‘Cape plants: a conspectus of the Cape flora of South Africa. Strelitzia, vol. 9.’ (National Botanical Institute: Pretoria, South Africa.)

Gordon AJ, Kessler W, Minchin FR (1990) Defoliation-induced stress in nodules of white clover. I. Changes in physiological parameters and protein synthesis. Journal of Experimental Botany 41, 1245–1253.
CrossRef | CAS |

Gordon AJ, Kessler W, Minchin FR, Skot L, James CL (1997) Stress-induced decline in soybean N2 fixation is related to nodule sucrose synthase activity. Plant Physiology 114, 937–946.

Graham PH (1992) Stress tolerance in Rhizobium and Bradyrhizobium and nodulation under adverse soil conditions. Canadian Journal of Microbiology 38, 475–484.
CrossRef | CAS |

Greinwald R, Veen G, Van Wyk BE, Witte L, Czygan FC (1989) Distribution and taxonomic significance of major alkaloids in the genus Virgilia. Biochemical Systematics and Ecology 17, 231–238.
CrossRef | CAS |

Grigg AM, Veneklass EJ, Lambers H (2008) Water relations and mineral nutrition of closely related woody plant species on desert dunes and interdunes. Australian Journal of Botany 56, 27–43.
CrossRef | CAS |

Groves RH (1983) ‘Nutrient cycling in Australian heath and South African fynbos.’ (Springer-Verlag: Berlin)

Harrison MT, Edwards EJ, Farquhar GD, Nicotra AB, Evans JR (2009) Nitrogen in cell walls of sclerophyllous leaves accounts for little of the variation in photosynthetic nitrogen-use-efficiency. Plant, Cell and Environment 32, 259–270.
CrossRef | CAS | PubMed |

Hernández G, Ramírez M, Valdés-López O, Tesfaye M, Graham MA, Czechowski T, Schlereth A, Wandrey M, Erban A, Chueng F, Wu HC, Lara M, Town CD, Kopka J, Udvardi MK, Vance CP (2007) Phosphorus stress in common bean: root transcript and metabolic response. Plant Physiology 144, 752–767.
CrossRef | PubMed |

Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil 237, 173–195.
CrossRef | CAS |

Høgh-Jensen H, Schjoererring JK, Soussana JF (2002) The influence of phosphorus deficiency on growth and nitrogen fixation of white clover plants. Annals of Botany 90, 745–753.
CrossRef | PubMed |

Horst WJ, Kamh M, Jibrin JM, Chude VA (2001) Agronomic measures for increasing P availability to crops. Plant and Soil 237, 211–223.
CrossRef | CAS |

Israel DW (1987) Investigation of the role of phosphorus in symbiotic dinitrogen. Plant Physiology 84, 835–840.
CrossRef | CAS | PubMed |

Jones DL (1998) Organic acids in the rhizosphere: a critical review. Plant and Soil 205, 25–44.
CrossRef | CAS |

Jungk A, Seeling B, Gerke J (1993) Mobilisation of different phosphate fractions in the rhizosphere. Plant and Soil 156, 91–94.
CrossRef |

Juszczuk IM, Rychter AM (2002) Pyruvate accumulation during phosphate deficiency stress of bean roots. Plant Physiology and Biochemistry 40, 783–788.
CrossRef | CAS |

Kanu SA, Dakora FD (2012) Symbiotic nitrogen contribution and biodiversity of root-nodule bacteria nodulating Psoralea species in the Cape fynbos, South Africa. Soil Biology and Biochemistry 54, 68–76.
CrossRef | CAS |

Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biology and Biochemistry 41, 1233–1244.
CrossRef | CAS |

Kaschuk G, Hungria M, Leffelaar PA, Giller KE, Kuyper TW (2010a) Differences in photosynthetic behaviour and leaf senescence of soybean (Glycine max [L.] Merrill) dependent on N2 fixation or nitrate supply. Plant Biology 12, 60–69.
CrossRef | CAS | PubMed |

Kaschuk G, Leffelaar PA, Giller KE, Alberton O, Hungria M, Kuyper TW (2010b) Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: a meta-analysis of potential photosynthate limitation of symbioses. Soil Biology and Biochemistry 42, 125–127.
CrossRef | CAS |

Koide RT, Goff MD, Dickie IA (2000) Components of growth efficiencies on mycorrhizal and non-mycorrhizal plants. New Phytologist 148, 163–168.
CrossRef |

Kruger FJ, Mitchell DT, Jarvis JUM (1983) ‘Mediterranean-type ecosystems. The role of nutrients.’ (Springer-Verlag: Berlin)

Lajtha K, Harrison AF (1995) Strategies of phosphorus acquisition and conservation by plants species and communities. In ‘Phosphorus in the global environment’. (Ed. H Tissen) pp. 140–147. (John Wiley Sons: Chichester, UK)

Lamont BB (2003) Structure, ecology and physiology of root clusters: a review. Plant and Soil 248, 1–9.
CrossRef | CAS |

Le Roux MR, Kahn S, Valentine AJ (2008) Organic acid accumulation inhibits N2 fixation in P stressed lupin nodules. New Phytologist 177, 956–964.
CrossRef | CAS | PubMed |

Le Roux MR, Khan S, Valentine AJ (2009) Nitrogen and carbon costs of soybean and lupin root systems during phosphate starvation. Symbiosis 48, 102–109.
CrossRef | CAS |

Lie TA (1981) Environmental physiology of legume-Rhizobium symbiosis. In ‘Nitrogen fixation vol. 1: ecology’. (Ed. WJ Broughton) pp. 104–134. (Clarendon Press: Oxford, UK)

Lynch JP, Beebe SE (1995) Adaptations of bean (Phaseolus vulgaris L.) to low phosphorus availability. HortScience 30, 1165–1171.

Lynch JP, Brown KM (2001) Topsoil foraging-an architectural adaptations of plants to low phosphorus. Plant and Soil 237, 225–237.
CrossRef | CAS |

Lynch JP, Ho MD (2005) Rhizoeconomics: carbon costs of phosphorus acquisition. Plant and Soil 269, 45–56.
CrossRef | CAS |

Marschner H (1995) ‘Mineral nutrition in plants.’ 2nd edn. (Academic: San Diego, CA)

Maseko ST, Dakora FP (2013) Plant Enzymes, root exudates, cluster roots and mycorrhizal symbiosis are the driver of P nutrition in native legumes growing in P deficient soil of the Cape Fynbos in South Africa. Journal of Agricultural Science and Technology 3, 331–340.

Mengel K (1994) Symbiotic dinitrogen fixation-its dependence on plant nutrition and its ecophysiological impact. Zeitschrift für Pflanzenernährung und Bodenkunde 157, 233–241.

Mitchell DT, Brown G, Jongens-Roberts SM (1984) Variation and forms of phosphorus in the sandy soils coastal fynbos, southern-western Cape. Journal of Ecology 72, 575–584.
CrossRef | CAS |

Mortimer PE, Archer E, Valentine AJ (2005) Mycorrhizal C costs and nutritional benefits in developing grapevines. Mycorrhiza 15, 159–165.
CrossRef | CAS | PubMed |

Mortimer PE, Perez-Fernandez MA, Valentine AJ (2008) The role of arbuscular mycorrhizal colonisation in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biology and Biochemistry 40, 1019–1027.
CrossRef | CAS |

Mortimer PE, Perez-Fernandez MA, Valentine AJ (2009) Arbuscular mycorrhizae affects the N and C economy of nodulated Phaseolus vulgaris (L.) during NH4 + nutrition. Soil Biology and Biochemistry 41, 2115–2121.
CrossRef | CAS |

Munns DN (1986) Acid soil tolerance in legume and rhizobia. Advances in Plant Nutrition 2, 63–91.

Muofhe ML, Dakora FD (1999) Nitrogen nutrition in nodulated field plants of the shrub tea legume Aspalathus linearis assessing using 15N natural abundance. Plant and Soil 209, 181–186.
CrossRef | CAS |

Neumann G, Martinoia E (2002) Cluster root- an underground adaptation for survival in extreme environments. Trends in Plant Science 7, 162–167.
CrossRef | CAS | PubMed |

Nielsen KL, Bouma TJ, Lynch J, Eissenstat DM (1998) Effects of phosphorus availability and vesicular-arbuscular mycorrhizas on the carbon budget of common bean (Phaseolus vulgaris). New Phytologist 139, 647–656.
CrossRef |

Nielsen KL, Amram E, Lynch JP (2001) The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. Journal of Experimental Botany 52, 329–339.
CrossRef | CAS | PubMed |

Olivera M, Tejera N, Iribarne C, Ocana A, Lluch C (2004) Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris): effect of phosphorus. Physiologia Plantarum 121, 498–505.
CrossRef | CAS |

Peng S, Eissenstat DM, Graham JH, Williams K, Hodge NC (1993) Growth depression in mycorrhizal citrus at high-phosphorus supply. Plant Physiology 101, 1063–1070.

Plaxton WC, Carswell MC (1999) Metabolic aspects of the phosphate starvation response in plants. In ‘Plant responses to environmental stress: from phytohormones to genome reorganisation’. (Ed. HR Lerner) pp. 350–372. (Marcel-Decker: New York)

Power SC, Cramer MD, Verboom GA, Chimphango SBM (2010) Does phosphate acquisition constraint legume persistence in the fynbos of the Cape Floristic Region? Plant and Soil 334, 33–46.
CrossRef | CAS |

Raghothama KG (1999) Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology 50, 665–693.
CrossRef | CAS | PubMed |

Richardson AE (1994) Soil microorganisms and phosphorus availability. In ‘Soil biota: management in sustainable farming systems’. (Eds CE Pankhurst, BD Doube, VVSR Gupta, PR Grace) pp. 50–60. (CSIRO: Melbourne)

Ryan PR, Delhaise E, Jones DL (2001) Function and mechanism of organic anion exudation from roots. Annual Review of Plant Physiology and Plant Molecular Biology 52, 527–560.
CrossRef | CAS | PubMed |

Rychter AM, Mikulska M (1990) The relationship between phosphate status and cyanide-resistant respiration in bean roots. Physiologia Plantarum 79, 663–667.
CrossRef | CAS | PubMed |

Sa TM, Israel DW (1991) Energy status and function of phosphorus deficient soybeans nodules. Plant Physiology 97, 928–935.
CrossRef | CAS | PubMed |

Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiology 116, 447–453.
CrossRef | CAS | PubMed |

Shearer G, Kohl DH (1986) N2-fixation in field settings: estimations based on natural 15N abundance. Australian Journal of Plant Physiology 13, 699–756.

Spriggs AC, Dakora FD (2008) Field assessment of symbiotic N2 fixation in wild and cultivated Cyclopia species in the South African fynbos by 15N natural abundance. Tree Physiology 29, 239–247.
CrossRef | PubMed |

Tang C, Hensinger P, Drevon J-J, Jaillard B (2001) Phosphorus deficiency impairs early nodule functioning and enhances proton release in roots of Medicago truncatula L. Annals of Botany 88, 131–138.
CrossRef | CAS |

Uhde-Stone C, Gilbert G, Johnson JMF, Litjens R, Zinn KE, Temple SJ, Vance CP, Allan DL (2003a) Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism. Plant and Soil 248, 99–116.
CrossRef | CAS |

Uhde-Stone C, Zinn KE, Ramerez-Yanez M, Li A, Vance CP, Allan DL (2003b) Nylon filters arrays reveal differential gene expression in proteoid roots of white lupin in response to P deficiency. Plant Physiology 131, 1064–1079.
CrossRef | CAS | PubMed |

Vadez V, Beck DP, Lasso JH, Drevon JJ (1997) Utilisation of acetylene reduction assay to screen for tolerance of symbiotic N2 fixation to limitation P nutrition in common bean. Physiologia Plantarum 99, 227–232.
CrossRef | CAS |

Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiology 127, 390–397.
CrossRef | CAS | PubMed |

Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable resource. New Phytologist 157, 423–447.
CrossRef | CAS |

Von Uexkull HR, Mutert E (1998) Global extent, development and economic impact of acid soils. In ‘Plant–soil interaction at low pH: principles and management’. (Eds RA Date, NJ Grundon NJ, GE Payment, ME Probert) pp. 5–9. (Kluwer Academic Publisher: Dordrecth, The Netherlands)

Williams K, Percival F, Merino J, Mooney HA (1987) Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant, Cell and Environment 10, 725–734.


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014