Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Anatomy and development of the reproductive units of Mapania pycnostachya and Hypolytrum schraderianum (Mapanioideae, Cyperaceae)

Mariana Maciel Monteiro A B , Vera Lúcia Scatena A and Aline Oriani A
+ Author Affiliations
- Author Affiliations

A Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista, Caixa Postal 199, 13506900 Rio Claro, SP, Brazil.

B Corresponding author. Email: marimonteiro199@gmail.com

Australian Journal of Botany 64(5) 389-400 https://doi.org/10.1071/BT15281
Submitted: 11 December 2015  Accepted: 17 June 2016   Published: 25 July 2016

Abstract

The typical mapaniid reproductive unit, which comprises several bracts, stamens and a gynoecium, may be interpreted as a single flower. Although developmental studies suggest that the mapaniid reproductive units are inflorescences, the units in species such as Hypolytrum schraderianum Nees are much reduced and strongly resemble a single flower. Therefore, an anatomical and developmental study of the reproductive units of Mapania pycnostachya (Benth.) T.Koyama and H. schraderianum was conducted to better understand their structure. In both species, two lateral bracts (prophyll-like units) are the first to emerge, followed by staminal and gynoecial primordia. The reproductive units of M. pycnostachya have two inner bracts (leaf-like structures) that initiate after the stamens. In H. schraderianum, they are absent. In both species, the reproductive units have spiral phyllotaxy and staminal traces that join the vascular system of the reproductive-unit axis at different levels. The vasculature pattern of these units differs from the cyperoid flowers. On the basis of these results, it is inferred that the reproductive units of both species are inflorescences, composed of unisexual flowers. It is also inferred that this structure is the general pattern for Mapanioideae and that loss of male flowers and inner bracts has occurred during evolution of the subfamily.

Additional keywords: Hypolytreae, ontogeny, sedge inflorescence, unisexual flower, vasculature.


References

Alves M (2003) Hypolytrum Rich. (Cyperaceae) nos Neotrópicos. PhD Thesis, Universidade de São Paulo, São Paulo, Brazil.

Alves M, Thomas WW, Wanderley MGL (2001) Typology of the inflorescence in species of Hypolytrum Rich. (Cyperaceae) from Brazil. Beitrage Biologie Pflanzen 72, 59–73.

Alves M, Estelita MEM, Wanderley MGL, Thomas WW (2002) Aplicações taxonômicas da anatomia foliar das espécies brasileiras de Hypolytrum Rich. (Cyperaceae). Revista Brasileira de Botanica. Brazilian Journal of Botany 25, 1–9.
Aplicações taxonômicas da anatomia foliar das espécies brasileiras de Hypolytrum Rich. (Cyperaceae).Crossref | GoogleScholarGoogle Scholar |

Alves M, Araújo AC, Prata AP, Vitta F, Hefler S, Trevisan R, Gil ASB, Martins S, Thomas W (2009) Diversity of Cyperaceae in Brazil. Rodriguésia 60, 771–782.

Blaser HW (1941a) Studies in the morphology of the Cyperaceae I. Morphology of flowers. Scirpoid genera. American Journal of Botany 28, 542–551.
Studies in the morphology of the Cyperaceae I. Morphology of flowers. Scirpoid genera.Crossref | GoogleScholarGoogle Scholar |

Blaser HW (1941b) Studies in the morphology of the Cyperaceae I. Morphology of flowers. Rhynchosporoid genera. American Journal of Botany 28, 832–838.
Studies in the morphology of the Cyperaceae I. Morphology of flowers. Rhynchosporoid genera.Crossref | GoogleScholarGoogle Scholar |

Blaser HW (1944) Morphology of the Cyperaceae. II. The prophyll. American Journal of Botany 31, 53–64.
Morphology of the Cyperaceae. II. The prophyll.Crossref | GoogleScholarGoogle Scholar |

Bradley D, Vincent C, Carpenter R, Coen E (1996) Pathways for inflorescence and floral induction in Antirrhinum. Development 122, 1535–1544.

Bruhl JJ (1991) Comparative development of some taxonomically critical floral/inflorescence features in Cyperaceae. Australian Journal of Botany 39, 119–127.
Comparative development of some taxonomically critical floral/inflorescence features in Cyperaceae.Crossref | GoogleScholarGoogle Scholar |

Bruhl JJ (1995) Sedge genera of the world: relationships and a new classification of the Cyperaceae. Australian Systematic Botany 8, 125–305.
Sedge genera of the world: relationships and a new classification of the Cyperaceae.Crossref | GoogleScholarGoogle Scholar |

Carpenter R, Copsey L, Vincent C, Doyle S, Magrath R, Coen E (1995) Control of flower development and phyllotaxy by meristem identity genes in Antirrhinum. The Plant Cell 7, 2001–2011.
Control of flower development and phyllotaxy by meristem identity genes in Antirrhinum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitFCmug%3D%3D&md5=dda28493541e3d3d16da72aedab7e623CAS | 8718618PubMed |

Dahlgren R, Clifford H, Yeo P (1985) ‘The families of the monocotyledons: evolution and taxonomy.’ (Springer-Verlag: Berlin)

Eiten LT (1976) Inflorescence units in the Cyperaceae. Annals of the Missouri Botanical Garden 63, 81–112.
Inflorescence units in the Cyperaceae.Crossref | GoogleScholarGoogle Scholar |

Endress PK (1994) ‘Diversity and evolutionary biology of tropical flowers.’ (Cambridge University Press: Cambridge, UK)

Endress PK (2006) Angiosperm floral evolution: morphological developmental framework. Advances in Botanical Research 44, 1–61.
Angiosperm floral evolution: morphological developmental framework.Crossref | GoogleScholarGoogle Scholar |

Endress PK (2010) Disentangling confusions in inflorescence morphology: patterns and diversity of reproductive shoot ramification in angiosperms. Journal of Systematics and Evolution 48, 225–239.
Disentangling confusions in inflorescence morphology: patterns and diversity of reproductive shoot ramification in angiosperms.Crossref | GoogleScholarGoogle Scholar |

Endress PK (2011) Evolutionary diversification of the flowers in Angiosperms. American Journal of Botany 98, 370–396.
Evolutionary diversification of the flowers in Angiosperms.Crossref | GoogleScholarGoogle Scholar | 21613132PubMed |

Endress PK, Doyle JA (2007) Floral phyllotaxis in basal angiosperms: development and evolution. Current Opinion in Plant Biology 10, 52–57.
Floral phyllotaxis in basal angiosperms: development and evolution.Crossref | GoogleScholarGoogle Scholar | 17140838PubMed |

Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. American Journal of Botany 55, 123–142.
Plant microtechnique: some principles and new methods.Crossref | GoogleScholarGoogle Scholar |

Gerrits PO, Smid L (1983) A new, less toxic polymerization system for the embedding of soft tissues in glycol methacrylate and subsequent preparing of serial sections. Journal of Microscopy 132, 81–85.
A new, less toxic polymerization system for the embedding of soft tissues in glycol methacrylate and subsequent preparing of serial sections.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmsVentw%3D%3D&md5=37b8ed8bb8323389cf901ae47764ae60CAS | 6361264PubMed |

Goetghebeur P (1998) Cyperaceae. In ‘The families and genera of vascular plants. Vol’.4.’ (Ed. K Kubitzki) pp. 141–190. (Springer: Berlin)

Govaerts R, Simpson DA, Goetghebeur P, Wilson KL, Egorova T, Bruhl J (2007) ‘World checklist of Cyperaceae. Sedges.’ (Royal Botanic Gardens, Kew, Publishing: London)

Guarise NJ, Vegetti AC (2008) Processes responsible of the structural diversity of the Cyperaceae synflorescence: hypothetical evolutionary trends. Flora 203, 640–647.
Processes responsible of the structural diversity of the Cyperaceae synflorescence: hypothetical evolutionary trends.Crossref | GoogleScholarGoogle Scholar |

Holttum RE (1948) The spikelets in Cyperaceae. Botanical Review 14, 525–541.
The spikelets in Cyperaceae.Crossref | GoogleScholarGoogle Scholar |

Johansen DA (1940) ‘Plant microtechnique.’ (McGraw-Hill Book Company: New York)

Kern JH (1974) Cyperaceae. In ‘Flora Malesiana. Vol. 7’. (Ed. CGGJ van Steenis) pp. 435–753. (Noordhoff: Leyden, The Netherlands)

Koyama T (1971) Systematic interrelationships among Sclerieae, Lagenocarpeae and Mapanieae (Cyperaceae). Mitteilungen der Botanischen Staatssammlung München 10, 604–617.

Linder HP (1998) Morphology and the evolution of wind pollination. In ‘Reproductive biology’. (Eds ST Owens, PJ Rudall) pp. 123–135. (Royal Botanic Gardens, Kew, Publishing: London)

Lorougnon G (1973) Le vecteur pollinique chez les Mapania et les Hypolytrum, Cypéracées do sous-bois des forêts tropicales ombrophiles. Bulletin du Jardin Botanique National de Belgique 43, 33–36.
Le vecteur pollinique chez les Mapania et les Hypolytrum, Cypéracées do sous-bois des forêts tropicales ombrophiles.Crossref | GoogleScholarGoogle Scholar |

Lucero LE, Vegetti AC, Reinheimer R (2014) Evolution and development of the spikelet and flower of Rhynchospora (Cyperaceae). International Journal of Plant Sciences 175, 186–201.
Evolution and development of the spikelet and flower of Rhynchospora (Cyperaceae).Crossref | GoogleScholarGoogle Scholar |

Muasya AM, Simpson DA, Verboom GA, Goetghebeur P, Naczi RFC, Chase MW, Smets E (2009) Phylogeny of Cyperaceae based on DNA sequence data: current progress and future prospects. Botanical Review 75, 2–21.
Phylogeny of Cyperaceae based on DNA sequence data: current progress and future prospects.Crossref | GoogleScholarGoogle Scholar |

O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59, 368–373.
Polychromatic staining of plant cell walls by toluidine blue O.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXmtVOmsw%3D%3D&md5=25c7226581c814ef42a944a81b9bfd68CAS |

Prenner G, Vergara-Silva F, Rudall PJ (2009) The key role of morphology in modelling inflorescence architecture. Trends in Plant Science 14, 302–309.
The key role of morphology in modelling inflorescence architecture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnt1Kjs7Y%3D&md5=6c3ce305239f2194e900190974b6a302CAS | 19423382PubMed |

Prusinkiewicz P, Erasmus Y, Lane B, Harder LD, Coen E (2007) Evolution and development of inflorescence architectures. Science 316, 1452–1456.
Evolution and development of inflorescence architectures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtFSjtrk%3D&md5=28266a264215977e066ae2a265c9dcf3CAS | 17525303PubMed |

Prychid CJ, Bruhl JJ (2013) Floral ontogeny and gene protein location rules out euanthial interpretation of reproductive units in Lepironia (Cyperaceae, Mapanioideae, Chrysitricheae). Annals of Botany 112, 161–177.
Floral ontogeny and gene protein location rules out euanthial interpretation of reproductive units in Lepironia (Cyperaceae, Mapanioideae, Chrysitricheae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVCqu7rJ&md5=fd611b50b076d1a221d589b857ae9eabCAS | 23723258PubMed |

Puri V (1951) The role of floral anatomy in the solution of morphological problems. Botanical Review 17, 471–553.
The role of floral anatomy in the solution of morphological problems.Crossref | GoogleScholarGoogle Scholar |

Remizowa MV, Sokoloff DD, Rudall PJ (2010) Evolutionary history of the monocot flower. Annals of the Missouri Botanical Garden 97, 617–645.
Evolutionary history of the monocot flower.Crossref | GoogleScholarGoogle Scholar |

Remizowa MV, Rudall PJ, Choob VV, Sokoloff DD (2013) Racemose inflorescences of monocots: structural and morphogenetic interaction at the flower/inflorescence level. Annals of Botany 112, 1553–1566.
Racemose inflorescences of monocots: structural and morphogenetic interaction at the flower/inflorescence level.Crossref | GoogleScholarGoogle Scholar | 23172413PubMed |

Reutemann AG, Vegetti AC, Pozner R (2012a) Structure and development of the style base in Abildgaardia, Bulbostylis and Fimbristylis (Cyperaceae, Cyperoideae, Abildgaardieae). Flora 207, 223–236.
Structure and development of the style base in Abildgaardia, Bulbostylis and Fimbristylis (Cyperaceae, Cyperoideae, Abildgaardieae).Crossref | GoogleScholarGoogle Scholar |

Reutemann A, Lucero L, Guarise N, Vegetti AC (2012b) Structure of the Cyperaceae inflorescence. Botanical Review 78, 184–204.
Structure of the Cyperaceae inflorescence.Crossref | GoogleScholarGoogle Scholar |

Reynders M, Vrijdaghs A, Larridon I, Huygh W, Leroux O, Muasya AM, Goetghebeur P (2012) Gynoecial anatomy and development in Cyperoideae (Cyperaceae, Poales): congenital fusion of carpels facilitates evolutionary modifications in pistil structure. Plant Ecology and Evolution 145, 96–125.
Gynoecial anatomy and development in Cyperoideae (Cyperaceae, Poales): congenital fusion of carpels facilitates evolutionary modifications in pistil structure.Crossref | GoogleScholarGoogle Scholar |

Richards JH (2002) Flower and spikelet morphology in sawgrass, Cladium jamaicense Crantz (Cyperaceae). Annals of Botany 90, 361–367.
Flower and spikelet morphology in sawgrass, Cladium jamaicense Crantz (Cyperaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVOgs7Y%3D&md5=7e7d03d018a51562c86577cfc620bc1fCAS | 12234148PubMed |

Richards JH, Bruhl JJ, Wilson KL (2006) Flower or spikelet? Understanding the morphology and development of reproductive structures in Exocarya (Cyperaceae, Mapanioideae, Chrysitricheae). American Journal of Botany 93, 1241–1250.
Flower or spikelet? Understanding the morphology and development of reproductive structures in Exocarya (Cyperaceae, Mapanioideae, Chrysitricheae).Crossref | GoogleScholarGoogle Scholar | 21642188PubMed |

Rudall PJ (2003) Monocot pseudanthia revisited: floral structure of the mycoheterotrophic family Triuridaceae. International Journal of Plant Sciences 164, S307–S320.
Monocot pseudanthia revisited: floral structure of the mycoheterotrophic family Triuridaceae.Crossref | GoogleScholarGoogle Scholar |

Simpson D (1992) ‘A revision of the genus Mapania.’ (Royal Botanic Gardens, Kew, Publishing: London)

Simpson DA, Furness CA, Hodkinson TR, Muasya AM, Chase MW (2003) Phylogenetic relationships in Cyperaceae subfamily Mapanioideae inferred from pollen and plastid DNA sequence data. American Journal of Botany 90, 1071–1086.
Phylogenetic relationships in Cyperaceae subfamily Mapanioideae inferred from pollen and plastid DNA sequence data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFCnu7s%3D&md5=5aa497145ad2c69f21e97ee7ed08045bCAS | 21659207PubMed |

Simpson DA, Muasya AM, Alves M, Bruhl JJ, Dhooge S, Chase MW, Furness CA, Ghamkhar K, Goetghebeur P, Hodkinson TR, Marchant AD, Nieuborg R, Reznicek AA, Roalson EH, Smets E, Starr JR, Thomas WW, Wilson KL, Zhang X (2007) Phylogeny of Cyperaceae based on DNA sequence data: a new rbcL analysis. Aliso 23, 72–83.
Phylogeny of Cyperaceae based on DNA sequence data: a new rbcL analysis.Crossref | GoogleScholarGoogle Scholar |

Sokoloff DD, Rudall P, Remizowa M (2006) Flower-like terminal structures in racemose inflorescences: a tool in morphogenetic and evolutionary research. Journal of Experimental Botany 57, 3517–3530.
Flower-like terminal structures in racemose inflorescences: a tool in morphogenetic and evolutionary research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yqt7zE&md5=94eeed273e95512ead02cf910cd2ab88CAS |

Sokoloff DD, Remizowa M, Linder HP, Rudall P (2009) Morphology and development of the gynoecium in Centrolepidaceae: the most remarkable range of variation in Poales. American Journal of Botany 96, 1925–1940.
Morphology and development of the gynoecium in Centrolepidaceae: the most remarkable range of variation in Poales.Crossref | GoogleScholarGoogle Scholar | 21622313PubMed |

Stützel T, Trovó M (2013) Inflorescences in Eriocaulaceae: taxonomic relevance and practical implications. Annals of Botany 112, 1505–1522.
Inflorescences in Eriocaulaceae: taxonomic relevance and practical implications.Crossref | GoogleScholarGoogle Scholar | 24158392PubMed |

Vrijdaghs A, Goetghebeur P, Muasya AM, Smets E, Caris P (2004) The nature of the perianth in Fuirena (Cyperaceae). South African Journal of Botany 70, 587–594.
The nature of the perianth in Fuirena (Cyperaceae).Crossref | GoogleScholarGoogle Scholar |

Vrijdaghs AC, Caris P, Goetghebeur P, Smets E (2005a) Floral ontogeny in Scirpus, Eriophorum and Dulichium (Cyperaceae), with special reference to the perianth. Annals of Botany 95, 1199–1209.
Floral ontogeny in Scirpus, Eriophorum and Dulichium (Cyperaceae), with special reference to the perianth.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3lsFequw%3D%3D&md5=2a1a115e0419d3960a2447c7affbbc3eCAS |

Vrijdaghs A, Goetghebeur P, Muasya AM, Caris P, Smets E (2005b) Floral ontogeny in Ficinia and Isolepis (Cyperaceae), with focus on the nature and origin of the gynophore. Annals of Botany 96, 1247–1264.
Floral ontogeny in Ficinia and Isolepis (Cyperaceae), with focus on the nature and origin of the gynophore.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MnhsVCgsQ%3D%3D&md5=092983412230d752d3cae70e16e0a874CAS | 16216820PubMed |

Vrijdaghs A, Goetghebeur P, Smets E, Muasya AM (2006) The floral scales in Hellmunthia (Cyperaceae, Cyperoideae) and Paramapania (Cyperaceae, Mapanioideae): an ontogenetic study. Annals of Botany 98, 619–630.
The floral scales in Hellmunthia (Cyperaceae, Cyperoideae) and Paramapania (Cyperaceae, Mapanioideae): an ontogenetic study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28vnsleisw%3D%3D&md5=011af17333b204c356207f00cd3131cbCAS | 16807256PubMed |

Vrijdaghs A, Muasya AM, Goetghebeur P, Caris P, Nagels A, Smets E (2009) A floral ontogenetic approach to homology questions within the Cyperoideae (Cyperaceae). Botanical Review 75, 30–51.
A floral ontogenetic approach to homology questions within the Cyperoideae (Cyperaceae).Crossref | GoogleScholarGoogle Scholar |

Vrijdaghs A, Reynders M, Larridon I, Muasya AM, Smets E, Goetghebeur P (2010) Spikelet structure and development in Cyperoideae, Cyperaceae: a monopodial general model based on ontogenetic evidence. Annals of Botany 105, 555–571.
Spikelet structure and development in Cyperoideae, Cyperaceae: a monopodial general model based on ontogenetic evidence.Crossref | GoogleScholarGoogle Scholar | 20197291PubMed |

Vrijdaghs A, Reynders M, Muasya AM, Larridon I, Goetghebeur P, Smets E (2011) Spikelet and floral ontogeny in Cyperus and Pycreus (Cyperaceae). Plant Ecology and Evolution 144, 44–63.
Spikelet and floral ontogeny in Cyperus and Pycreus (Cyperaceae).Crossref | GoogleScholarGoogle Scholar |

Weberling F (1989) ‘Morphology of flowers and inflorescences.’ (Cambridge University Press: Cambridge, UK)

Wragg PD, Johnson SD (2011) Transition from wind pollination to insect pollination in sedges: experimental evidence and functional traits. New Phytologist 191, 1128–1140.
Transition from wind pollination to insect pollination in sedges: experimental evidence and functional traits.Crossref | GoogleScholarGoogle Scholar | 21585389PubMed |