Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthetic and Computational Studies of Acyl Radical Cyclizations with β-Alkoxyacrylates: Formal Synthesis of (±)-Longianone

Heather M. Aitken A B , Carl H. Schiesser A B and Christopher D. Donner A B C
+ Author Affiliations
- Author Affiliations

A School of Chemistry, The University of Melbourne, Vic. 3010, Australia.

B Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Vic. 3010, Australia.

C Corresponding author. Email: cdonner@unimelb.edu.au

Australian Journal of Chemistry 64(4) 409-415 https://doi.org/10.1071/CH10462
Submitted: 17 December 2010  Accepted: 15 February 2011   Published: 18 April 2011

Abstract

An investigation into the cyclization of acyl radicals with mono- and disubstituted β-alkoxyacrylates is described. Ether-tethered acyl radicals, generated directly from the corresponding aldehyde, undergo cyclization to form dioxaspiro heterocyclic systems including 1,7-dioxaspiro[4,4]nonane-4,8-dione and 1,8-dioxaspiro[5,4]decane-5,9-dione. This strategy is applied to a concise formal synthesis of the fungal metabolite longianone. Density functional theory calculations provide insight into the chemistry of the acyl radicals in this study.


References

[1]  (a) E. J. Enholm, G. Prasad, Tetrahedron Lett. 1989, 30, 4939.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) E. Lee, J. S. Tae, Y. H. Chong, Y. C. Park, M. Yun, S. Kim, Tetrahedron Lett. 1994, 35, 129.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) E. J. Enholm, A. Trivellas, Tetrahedron Lett. 1989, 30, 1063.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlslelsbs%3D&md5=8b2e1f7471c058ec4fef19862ee38bccCAS |
      For a recent review on SmI2 in radical conjugate addition reactions see: G. S. C. Srikanth, S. L. Castle, Tetrahedron 2005, 61, 10377. 10.1016/J.TET.2005.07.077

[3]  D. J. Edmonds, D. Johnston, D. J. Procter, Chem. Rev. 2004, 104, 3371.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktlaisrc%3D&md5=53adb3d0005ac8b370ecd2cfce77b047CAS | 15250745PubMed |

[4]  K. Suzuki, H. Matsukura, G. Matsuo, H. Koshino, T. Nakata, Tetrahedron Lett. 2002, 43, 8653. 10.1016/S0040-4039(02)02180-9 Examples of carbocycle formation include: (b) J. T. Njardarson, J. L. Wood, Org. Lett. 2001, 3, 2431. https://doi.org/10.1021/OL015978V
      (b) E. J. Enholm, J. A. Burroff, Tetrahedron 1997, 53, 13583.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) E. J. Enholm, H. Satici, A. Trivellas, J. Org. Chem. 1989, 54, 5841.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  For a review on acyl radicals see: C. Chatgilialoglu, D. Crich, M. Komatsu, I. Ryu, Chem. Rev. 1999, 99, 1991. 10.1021/CR9601425

[6]  B. P. Roberts, Chem. Soc. Rev. 1999, 28, 25.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1SmsQ%3D%3D&md5=2baff6c9b690c7c9f78c8fccf6204bb7CAS |

[7]  S. Tsujimoto, S. Sakaguchi, Y. Ishii, Tetrahedron Lett. 2003, 44, 5601.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFGisbY%3D&md5=f13f3f06840b980938754c381d2adfabCAS |

[8]  K. Yoshikai, T. Hayama, K. Nishimura, K. Yamada, K. Tomioka, J. Org. Chem. 2005, 70, 681.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVyltrzI&md5=e6285ba436c80dd2a9de87d11d159547CAS | 15651818PubMed |

[9]  I. Ryu, H. Miyazato, K. Matsu, M. Tojino, T. Fukuyama, S. Komatsu, J. Org. Chem. 2003, 125, 5632. See also M. Tojino, N. Otsuka, T. Fukuyama, H. Matsubara, C. H. Schiesser, H. Kuriyama, H. Miyazato, S. Minakata, M. Komatsu, I. Ryu, Org. Biomol. Chem. 2003, 1, 4262.
      (b) S. H. Kyne, C. Y. Lin, I. Ryu, M. L. Coote, C. H. Schiesser, Chem. Commun. 2010, 46, 6521.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. A. Lucas, C. H. Schiesser, J. Org. Chem. 1998, 63, 3032.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) S. H. Kyne, C. H. Schiesser, Aust. J. Chem. 2009, 62, 728.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotl2murs%3D&md5=d5cc536da7eca75821eff989fadc54f6CAS |
      (b) S. H. Kyne, C. H. Schiesser, H. Matsubara, J. Org. Chem. 2008, 73, 427.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. H. Schiesser, U. Wille, H. Matsubara, I. Ryu, Acc. Chem. Res. 2007, 40, 303.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) C. H. Schiesser, H. Matsubara, I. Ritsner, U. Wille, Chem. Commun. 2006, 1067.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) H. Matsubara, C. T. Falzon, I. Ryu, C. H. Schiesser, Org. Biomol. Chem. 2006, 4, 1920.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  C. D. Donner, Synthesis 2010, 415.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisVeru7c%3D&md5=ed8fe1d6b2acb580ba55eb071600c42cCAS |

[12]  F. Alonso, F. Foubelo, M. Yus, Curr. Chem. Biol. 2007, 1, 317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2nsbnM&md5=5fa259b19c506757fe38ea71b5683571CAS |

[13]  R. L. Edwards, D. J. Maitland, C. L. Oliver, M. S. Pacey, L. Shields, A. J. S. Whalley, J. Chem. Soc., Perkin Trans. 1 1999, 715.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFGhu74%3D&md5=eb671a415ddab97eb7457d485e15c0a2CAS |

[14]  P. G. Steel, Chem. Commun. 1999, 2257.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntFajtbs%3D&md5=bca5fce568d6e728a05337ba7cae4a3fCAS |

[15]  I. N. Lykakis, I.-P. Zaravinos, C. Raptis, M. Stratakis, J. Org. Chem. 2009, 74, 6339.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXot1ejtL4%3D&md5=d5ad63e5e9a355d91029534e37724723CAS | 19583231PubMed |

[16]  J. Inanaga, Y. Baba, T. Hanamoto, Chem. Lett. 1993, 22, 241.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  See: M. P. Bertrand, C. Ferreri, in Radicals in Organic Synthesis, Volume 2 (Eds P. Renaud, M. K. Sibi) 2001, pp. 485–504 (Wiley-VCH: Weinheim); and references cited therein.

[18]  A referee is acknowledged for suggesting the possible formation of the product 29.

[19]  A. L. J. Beckwith, C. H. Schiesser, Tetrahedron 1985, 41, 3925.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XkvFKks78%3D&md5=6c0038ec8591ae20b3f8dde6a6632a91CAS |

[20]  K. W. Watkins, W. W. Thompson, Int. J. Chem. Kinet. 1973, 5, 791.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXltFCqs7o%3D&md5=cd9c8fd896c26a808dcee4a7aaab7cc7CAS |

[21]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, Jr, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Borone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Peterson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision B. 05 2003 (Gaussian, Inc.: Pittsburgh, PA).