CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Chemistry   
Australian Journal of Chemistry
Journal Banner
  An international journal for chemical science
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
For Advertisers
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Covers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

Affiliated with RACI

Royal Australian Chemical Institute
Royal Australian
Chemical Institute


 

Article << Previous     |     Next >>   Contents Vol 64(8)

Progress Toward Robust Polymer Hydrogels

Sina Naficy A, Hugh R. Brown A B, Joselito M. Razal A, Geoffrey M. Spinks A B C and Philip G. Whitten A C

A Intelligent Polymer Research Institute and ARC Centre of Excellence in Electromaterials Science, University of Wollongong, Innovation Campus, Squires Way, Fairy Meadow, NSW, 2519, Australia.
B School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.
C Corresponding authors. Email: gspinks@uow.edu.au; whitten@uow.edu.au

Australian Journal of Chemistry 64(8) 1007-1025 http://dx.doi.org/10.1071/CH11156
Submitted: 20 April 2011  Accepted: 18 July 2011   Published: 19 August 2011


 
PDF (2.2 MB) $25
 Export Citation
 Print
  
Abstract

In this review we highlight new developments in tough hydrogel materials in terms of their enhanced mechanical performance and their corresponding toughening mechanisms. These mechanically robust hydrogels have been developed over the past 10 years with many now showing mechanical properties comparable with those of natural tissues. By first reviewing the brittleness of conventional synthetic hydrogels, we introduce each new class of tough hydrogel: homogeneous gels, slip-link gels, double-network gels, nanocomposite gels and gels formed using poly-functional crosslinkers. In each case we provide a description of the fracture process that may be occurring. With the exception of double network gels where the enhanced toughness is quite well understood, these descriptions remain to be confirmed. We also introduce material property charts for conventional and tough synthetic hydrogels to illustrate the wide range of mechanical and swelling properties exhibited by these materials and to highlight links between these properties and the network topology. Finally, we provide some suggestions for further work particularly with regard to some unanswered questions and possible avenues for further enhancement of gel toughness.





References

[1]  J. Kopecek, Hydrogels: From soft contact lenses and implants to self-assembled nanomaterials J. Polym. Sci. A Polym. Chem. 2009, 47, 5929.
         | CrossRef | CAS |

[2]  N. A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations Eur. J. Pharm. Biopharm. 2000, 50, 27.
         | CrossRef | CAS |

[3]  N. A. Peppas, J. Hilt, A. Khademhosseini, R. Langer, Hydrogels in biology and medicine: from molecular principles to bionanotechnology Adv. Mater. 2006, 18, 1345.
         | CrossRef | CAS |

[4]  K. Deligkaris, T. S. Tadele, W. Olthuis, A. van den Berg, Hydrogel-based devices for biomedical applications Sens. Actuators B Chem. 2010, 147, 765.
         | CrossRef |

[5]  Q.-Z. Chen, A. Bismarck, U. Hansen, S. Junaid, M. Q. Tran, S. E. Harding, N. N. Ali, A. R. Boccaccini, Characterization of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue Biomaterials 2008, 29, 47.
         | CrossRef |

[6]  Y. Osada, H. Okuzaki, H. Hori, A polymer gel with electrically driven motility Nature 1992, 355, 242.
         | CrossRef | CAS |

[7]  Y. Osada, J. P. Gong, Soft and wet materials: polymer gels Adv. Mater. 1998, 10, 827.
         | CrossRef | CAS |

[8]  K. K. Westbrook, H. J. Qi, Actuator designs using environmentally responsive hydrogels J. Intell. Mater. Syst. Struct. 2008, 19, 597.
         | CrossRef | CAS |

[9]  M. K. Shin, G. M. Spinks, S. R. Shin, S. I. Kim, S. J. Kim, Nanocomposite hydrogel with high toughness for bioactuators Adv. Mater. 2009, 21, 1712.
         | CrossRef | CAS |

[10]  J. M. Swann, A. J. Ryan, Chemical actuation in responsive hydrogels Polym. Int. 2009, 58, 285.
         | CrossRef | CAS |

[11]  M. L. O’Grady, P.-l. Kuo, K. K. Parker, Optimization of electroactive hydrogel actuators ACS Appl. Mater. Interfaces 2010, 2, 343.
         | CrossRef | CAS |

[12]  D. Zhu, C. Li, X. Zeng, H. Jiang, Tunable-focus microlens arrays on curved surfaces Appl. Phys. Lett. 2010, 96, 081111.
         | CrossRef |

[13]  G. H. Kwon, Y. Y. Choi, J. Y. Park, D. H. Woo, K. B. Lee, J. H. Kim, S.-H. Lee, Electrically-driven hydrogel actuators in microfluidic channels: fabrication, characterization, and biological application Lab Chip 2010, 10, 1604.
         | CrossRef | CAS |

[14]  D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, B.-H. Jo, Functional hydrogel structures for autonomous flow control inside microfluidic channels Nature 2000, 404, 588.
         | CrossRef | CAS |

[15]  K. F. Arndt, D. Kuckling, A. Richter, Application of sensitive hydrogels in flow control Polym. Adv. Technol. 2000, 11, 496.
         | CrossRef | CAS |

[16]  N. S. Satarkar, W. Zhang, R. E. Eitel, J. Z. Hilt, Magnetic hydrogel nanocomposites as remote controlled microfluidic valves Lab Chip 2009, 9, 1773.
         | CrossRef | CAS |

[17]  K. Y. Lee, D. J. Mooney, Hydrogels for tissue engineering Chem. Rev. 2001, 101, 1869.
         | CrossRef | CAS |

[18]  K. T. Nguyen, J. L. West, Photopolymerizable hydrogels for tissue engineering applications Biomaterials 2002, 23, 4307.
         | CrossRef | CAS |

[19]  R. Landers, U. Hübner, R. Schmelzeisen, R. Mülhaupt, Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering Biomaterials 2002, 23, 4437.
         | CrossRef | CAS |

[20]  J. L. Drury, D. J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications Biomaterials 2003, 24, 4337.
         | CrossRef | CAS |

[21]  M. Lutolf, G. Raeber, A. Zisch, N. Tirelli, J. Hubbell, Cell-responsive synthetic hydrogels Adv. Mater. 2003, 15, 888.
         | CrossRef | CAS |

[22]  K. Mayumi, K. Ito, Structure and dynamics of polyrotaxane and slide-ring materials Polymer 2010, 51, 959.
         | CrossRef | CAS |

[23]  J. P. Gong, Why Are Double Network Hydrogels so Tough? Soft Matter 2010, 6, 2583.
         | CrossRef | CAS |

[24]  K. Haraguchi, Nanocomposite hydrogels Curr. Opin. Solid State Mater. Sci. 2007, 11, 47.
         | CrossRef | CAS |

[25]  L. R. G. Treloar, The Physics of Rubber Elasticity (3rd Ed.) 2005 (Clarendon Press: Oxford).

[26]  H. Furukawa, K. Horie, R. Nozaki, M. Okada, “Swelling-induced modulation of static and dynamic fluctuations in polyacrylamide gels observed by scanning microscopic light scattering Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2003, 68, 031406.
         | CrossRef |

[27]  K. Ghosh, D. E. Ingber, Micromechanical control of cell and tissue development: implications for tissue engineering Adv. Drug Deliv. Rev. 2007, 59, 1306.
         | CrossRef | CAS |

[28]  N. A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations Eur. J. Pharm. Biopharm. 2000, 50, 27.
         | CrossRef | CAS |

[29]  A. A. Griffith, The phenomena of rupture and flow in solids Philos. Trans. R. Soc. Lond. A 1920, CCXXI, 163.

[30]  I. M. Ward, J. Sweeney, An Introduction to the Mechanical Properties of Solid Polymers (2nd Ed.) 2004 (John Wiley & Sons: Chichester).

[31]  R. S. Rivlin, A. G. Thomas, Rupture of rubber. I. Characteristic energy for tearing J. Polym. Sci., Polym. Phys. Ed. 1953, 10, 291.
         | CrossRef | CAS |

[32]  ASTM D624 “Standard test for Tear Strength of Conventional Vulcanized Rubber and Thermoplastic Elastomers” American Standard for Testing and Materials 2001.

[33]  C. M. Muscat-Fenech, A. G. Atkins, Elastoplastic trouser tear testing of sheet materials Int. J. Fract. 1994, 67, 69.
         | CrossRef | CAS |

[34]  J. T. Bauman, Fatigue, Stress, Strain of Rubber Components: Guide for Design Engineers, Hanser, Munich, 2008.

[35]  G. J. Lake, A. G. Thomas, The strength of highly elastic materials Proc. R. Soc. Lond. A 1967, 300, 108.
         | CrossRef | CAS |

[36]  H. R. Brown, A model of the fracture of double network gels Macromolecules 2007, 40, 3815.
         | CrossRef | CAS |

[37]  J. Zarzycki, Critical stress intensity factors of wet gels J. Non-Cryst. Solids 1988, 100, 359.
         | CrossRef | CAS |

[38]  Y. Tanaka, K. Fukao, Y. Miyamoto, Fracture energy of gels Eur. Phys. J. E 2000, 3, 395.
         | CrossRef | CAS |

[39]  Rubber Technology (3rd Ed.), (Ed. M. Morton) 1987 (Van Nostrand Reinhold Co.: New York).

[40]  J. E. Mark, B. Erman, Rubberlike Elasticity. A Molecular Primer, 1988 (Wiley-Interscience: New York).

[41]  B. Erman, J. E. Mark, Annu. Rev. Phys. Chem. 1989, 40, 351.
         | CrossRef | CAS |

[42]  T.-P. Hsu, D. S. Ma, C. Cohen, Effects of inhomogeneities in polyacrylamide gels on thermodynamic and transport properties Polymer 1983, 24, 1273.
         | CrossRef | CAS |

[43]  Y. Cohen, O. Ramon, I. J. Kopelman, S. Mizrahi, Characterisation of inhomogeneous polyacrylamide hydrogels J. Polym. Sci., B, Polym. Phys. 1992, 30, 1055.
         | CrossRef | CAS |

[44]  H. Furukawa, K. Horie, Swelling induced modulation of static and dynamic fluctuations in polyacrylamide gels observed by scanning microscopic light scattering Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2003, 68, 031406.
         | CrossRef |

[45]  R. E. Webber, C. Creton, H. R. Brown, J. P. Gong, Large strain hysteresis and mullins effect of tough double-network hydrogels Macromolecules 2007, 40, 2919.
         | CrossRef | CAS |

[46]  E. Nedkov, S. Tsvetkova, Effect of γ-irradiation on the crystalline structure of ultra high molecular weight poly (ethylene oxide) Radiat. Phys. Chem. 1977 1983, 22, 917.

[47]  A. Gestos, P. G. Whitten, G. M. Spinks, G. G. Wallace, Crosslinking neat ultrathin films and nanofibres of pH-responsive poly(acrylic acid) by UV radiation Soft Matter 2010, 6, 1045.
         | CrossRef | CAS |

[48]  X. Z. Wang, H. L. Wang, H. R. Brown, Jellyfish gel and its hybrid hydrogels with high mechanical strength Soft Matter 2011, 7, 211.
         | CrossRef | CAS |

[49]  D. A. Ossipov, J. N. Hilborn, Poly(vinyl alcohol)-based hydrogels formed by click chemistry Macromolecules 2006, 39, 1709.
         | CrossRef | CAS |

[50]  V. Crescenzi, L. Cornelio, C. Di Meo, S. Nardecchia, R. Lamanna, Novel hydrogels via click chemistry: synthesis and potential biomedical applications Biomacromolecules 2007, 8, 1844.
         | CrossRef | CAS |

[51]  B. D. Polizzotti, B. D. Fairbanks, K. S. Anseth, Three-dimensional biochemical patterning of click-based composite hydrogels via thiolene photopolymerization Biomacromolecules 2008, 9, 1084.
         | CrossRef | CAS |

[52]  M. van Dijk, C. F. van Nostrum, W. E. Hennink, D. T. S. Rijkers, R. M. J. Liskamp, Synthesis and characterization of enzymatically biodegradable PEG and peptide-based hydrogels prepared by click chemistry Biomacromolecules 2010, 11, 1608.
         | CrossRef | CAS |

[53]  L. Q. Xu, F. Yao, G. D. Fu, E. T. Kang, Interpenetrating network hydrogels via simultaneous click chemistry and atom transfer radical polymerization Biomacromolecules 2010, 11, 1810.
         | CrossRef | CAS |

[54]  X.-D. Xu, C.-S. Chen, Z.-C. Wang, G.-R. Wang, S.-X. Cheng, X.-Z. Zhang, R.-X. Zhuo, Click chemistry for in situ formation of thermoresponsive P(NIPAAm-co-HEMA)-based hydrogels J. Polym. Sci. A Polym. Chem. 2008, 46, 5263.
         | CrossRef | CAS |

[55]  H.-L. Wei, Z. Yang, Y. Chen, H.-J. Chu, J. Zhu, Z.-C. Li, Characterisation of N-vinyl-2-pyrrolidone-based hydrogels prepared by a Diels-Alder click reaction in water Eur. Polym. J. 2010, 46, 1032.
         | CrossRef | CAS |

[56]  M. Malkoch, R. Vestberg, N. Gupta, L. Mespouille, P. Dubois, A. F. Mason, J. L. Hedrick, Q. Liao, C. W. Frank, K. Kingsbury, C. J. Hawker, Synthesis of well-defined hydrogel networks using click chemistry Chem. Commun. 2006, , 2774.
         | CrossRef | CAS |

[57]  T. Sakai, T. Matsunaga, Y. Yamamoto, C. Ito, R. Yoshida, S. Suzuki, N. Sasaki, M. Shibayama, U.-i. Chung, Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers Macromolecules 2008, 41, 5379.
         | CrossRef | CAS |

[58]  T. Matsunaga, T. Sakai, Y. Akagi, U.-i. Chung, M. Shibayama, Structure characterization of tetra-PEG gel by small-angle neutron scattering Macromolecules 2009, 42, 1344.
         | CrossRef | CAS |

[59]  Y. Akagi, T. Matsunaga, M. Shibayama, U.-i. Chung, T. Sakai, Evaluation of topological defects in tetra-PEG gels Macromolecules 2010, 43, 488.
         | CrossRef | CAS |

[60]  T. Matsunaga, T. Sakai, Y. Akagi, U.-i. Chung, M. Shibayama, SANS and SLS studies on tetra-arm PEG gels in as-prepared and swollen states Macromolecules 2009, 42, 6245.
         | CrossRef | CAS |

[61]  Y. Okumura, K. Ito, The polyrotaxane gel: a topological gel by figure-of-eight cross-links Adv. Mater. 2001, 13, 485.
         | CrossRef | CAS |

[62]  T. Karino, Y. Okumura, C. Zhao, T. Kataoka, K. Ito, M. Shibayama, SANS studies on deformation mechanism of slide-ring gel Macromolecules 2005, 38, 6161.
         | CrossRef | CAS |

[63]  T. Koga, F. Tanaka, Elastic properties of polymer networks with sliding junctions Eur. Phys. J. E 2005, 17, 225.
         | CrossRef | CAS |

[64]  J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Double-network hydrogels with extremely high mechanical strength Adv. Mater. 2003, 15, 1155.
         | CrossRef | CAS |

[65]  Y. Kawauchi, Y. Tanaka, H. Furukawa, T. Kurokawa, T. Nakajima, Y. Osada, J. P. Gong, Brittle, ductile, paste-like behaviors and distinct necking of double network gels with enhanced heterogeneity Journal of Physics: Conference Series 2009, 184, 012016.
         | CrossRef |

[66]  Y.-H. Na, Y. Tanaka, Y. Kawauchi, H. Furukawa, T. Sumiyoshi, J. P. Gong, Y. Osada, Necking phenomenon of double-network gels Macromolecules 2006, 39, 4641.
         | CrossRef | CAS |

[67]  T. Nakajima, H. Furukawa, J. P. Gong, E. K. Lin, W.-l. Wu, A deformation mechanism for double-network hydrogels with enhanced toughness Macromol. Symp. 2010, 291, 122.
         | CrossRef |

[68]  T. Nakajima, H. Furukawa, Y. Tanaka, T. Kurokawa, Y. Osada, J. P. Gong, True chemical structure of double network hydrogels Macromolecules 2009, 42, 2184.
         | CrossRef | CAS |

[69]  K. Okumura, Toughness of double elastic networks Europhys. Lett. 2004, 67, 470.
         | CrossRef | CAS |

[70]  Y. Tanaka, A local damage model for anomalous high toughness of double-network gels Europhys. Lett. 2007, 78, 56005.
         | CrossRef |

[71]  Q. M. Yu, Y. Tanaka, H. Furukawa, T. Kurokawa, J. P. Gong, Direct observation of damage zone around crack tips in double-network gels Macromolecules 2009, 42, 3852.
         | CrossRef | CAS |

[72]  Y. Tanaka, R. Kuwabara, Y.-H. Na, T. Kurokawa, J. P. Gong, Y. Osada, Determination of fracture energy of high strength double network hydrogels J. Phys. Chem. B 2005, 109, 11559.
         | CrossRef | CAS |

[73]  M. A. Llorente, A. L. Andrady, J. E. Mark, Model networks of end-linked polydimethylsiloxane chains. XI. Use of very short network chains to improve ultimate properties J. Polym. Sci., B, Polym. Phys. 1981, 19, 621.
         | CrossRef | CAS |

[74]  M.-Y. Tang, A. Letton, J. E. Mark, Colloid Polym. Sci. 1984, 262, 990.
         | CrossRef | CAS |

[75]  K. Haraguchi, Synthesis and properties of soft nanocomposite materials with novel organic / inorganic network structures Polym. J. 2011, 43, 223.
         | CrossRef | CAS |

[76]  K. Haraguchi, Y. Xu, G. Li, Molecular characteristics of poly(N-isopropylacrylamide) separated from nanocomposite gels by removal of clay from the polymer/clay network Macromol. Rapid Commun. 2010, 31, 718.
         | CrossRef | CAS |

[77]  K. Haraguchi, H. J. Li, K. Matsuda, T. Takehisa, E. Elliott, Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA–clay nanocomposite hydrogels Macromolecules 2005, 38, 3482.
         | CrossRef | CAS |

[78]  K. Haraguchi, T. Takehisa, Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties Adv. Mater. 2002, 14, 1120.
         | CrossRef | CAS |

[79]  K. Haraguchi, T. Takehisa, S. Fan, Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay Macromolecules 2002, 35, 10162.
         | CrossRef | CAS |

[80]  K. Haraguchi, H.-J. Li, Mechanical properties and structure of polymer–clay nanocomposite gels with high clay content Macromolecules 2006, 39, 1898.
         | CrossRef | CAS |

[81]  K. Haraguchi, H.-J. Li, Mechanical properties of nanocomposite hydrogels consisting of organic/inorganic networks and the effects of clay modification thereto J. Network Polym. Jpn. 2004, 25, 2.
         | CAS |

[82]  W.-L. Lin, W. Fan, A. Marcellan, D. Hourdet, C. Creton, Large strain and fracture properties of poly(dimethylacrylamide) / silica hybrid hydrogels Macromolecules 2010, 43, 2554.
         | CrossRef | CAS |

[83]  S. Abdurrahmanoglu, O. Okay, Rheological behaviour of polymer-clay nanocomposite hydrogels: Effect of nanoscale interactions J. Appl. Polym. Sci. 2010, 116, 2328.
         | CrossRef | CAS |

[84]  M. Zhu, Y. Liu, B. Sun, W. Zhang, X. Liu, H. Yu, Y. Zhang, D. Kuckling, H.-J. P. Adler, A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation Macromol. Rapid Commun. 2006, 27, 1023.
         | CrossRef | CAS |

[85]  Y. Liu, M. Zhu, X. Liu, Y. M. Jiang, Y. Ma, Z. Y. Qin, D. Kuckling, H.-J. P. Adler, Mechanical properties and phase transition of high clay content clay/poly(N-isopropylacrylamide) nanocomposite hydrogel Macromol. Symp. 2007, 254, 353.
         | CrossRef | CAS |

[86]  X. Hu, L. Xiong, T. Wang, Z. Lin, X. Liu, Z. Tong, Synthesis and dual response of ionic nanocomposite hydrogels with ultrahigh tensibility and transparence Polymer 2009, 50, 1933.
         | CrossRef | CAS |

[87]  T. Nishida, H. Endo, N. Osaka, H.-J. Li, K. Haraguchi, M. Shibayama, Deformation mechanism of nanocomposite gels studied by contrast variation small-angle neutron scattering Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2009, 80, 030801 (R).
         | CrossRef |

[88]  T. Huang, H. Xu, K. Jiao, L. Zhu, H. Brown, H. Wang, A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel Adv. Mater. 2007, 19, 1622.
         | CrossRef | CAS |

[89]  X. Qin, F. Zhao, Y. Liu, H. Wang, S. Feng, High mechanical strength hydrogels preparation using hydrophilic reactive microgels as crosslinking agents Colloid Polym. Sci. 2009, 287, 621.
         | CrossRef | CAS |

[90]  Y. Wu, Z. Zhou, Q. Fan, L. Chen, M. Zhu, Facile in-situ fabrication of novel organic nanoparticle hydrogels with excellent mechanical properties J. Mater. Chem. 2009, 19, 7340.
         | CrossRef | CAS |

[91]  K. Xu, Y. Tan, Q. Chen, H. An, W. Li, L. Dong, P. Wang, A novel multi-responsive polyampholyte composite hydrogel with excellent mechanical strength and rapid shrinking rate J. Colloid Interface Sci. 2010, 345, 360.
         | CrossRef | CAS |

[92]  L.-W. Xia, X.-J. Ju, J.-J. Liu, R. Xie, L.-Y. Chu, Responsive hydrogels with poly(N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocks J. Colloid Interface Sci. 2010, 349, 106.
         | CrossRef | CAS |

[93]  G. Dubois, W. Volksen, T. Magbitang, R. Miller, D. Gage, R. Dauskardt, Molecular network reinforcement of sol–gel glasses Adv. Mater. 2007, 19, 3989.
         | CrossRef | CAS |

[94]  R. J. Crawford, Plastics Engineering, (3rd Ed.) 2004, (Elsevier: Oxford).

[95]  K. Friedrich, U. A. Karsch, Failure processes in particulate filled polypropylene Fibre Science and Technology 1983, 18, 37.
         | CrossRef | CAS |

[96]  A. C. Meeks, Fracture and mechanical properties of epoxy resins and rubber-modified epoxy resins Polymer 1974, 15, 675.
         | CrossRef | CAS |

[97]  R. J. M. Borggreve, R. J. Gaymans, J. Schuijer, J. F. I. Housz, Brittle-tough transition in nylon-rubber blends: effect of rubber concentration and particle size Polymer 1987, 28, 1489.
         | CrossRef | CAS |

[98]  D. S. Parker, H. J. Sue, J. Huang, A. F. Yee, Toughening mechanisms in core-shell rubber modified polycarbonate Polymer 1990, 31, 2267.
         | CrossRef | CAS |

[99]  M. Ashby, H. Shercliff, D. Cebon, Materials Engineering, Science, Processing and Design (2nd Ed.), 2010 (Elsevier: Oxford).

[100]  T. Baumberger, O. Ronsin, Cooperative effect of stress and ion displacement on the dynamics of cross-link unzipping and rupture of alginate gels Biomacromolecules 2010, 11, 1571.
         | CrossRef | CAS |

[101]  T. Baumberger, C. Caroli, D. Martina, Fracture of a biopolymer gel as a viscoplastic disentanglement process Eur. Phys. J. E 2006, 21, 81.
         | CrossRef | CAS |

[102]  J. Zhang, C. R. Daubert, E. A. Foegeding, Characterization of polyacrylamide gels as an elastic model for food gels Rheologica Acta 2005, 44, 622.
         | CrossRef | CAS |

[103]  M. Huang, H. Furukawa, Y. Tanaka, T. Nakajima, Y. Osada, J. P. Gong, Importance of entanglement between first and second components in high-strength double network gels Macromolecules 2007, 40, 6658.
         | CrossRef | CAS |

[104]  H. Tsukeshiba, M. Huang, Y.-H. Na, T. Kurokawa, R. Kuwabara, Y. Tanaka, H. Furukawa, Y. Osada, J. P. Gong, Effect of polymer entanglement on the toughening of double network hydrogels J. Phys. Chem. B 2005, 109, 16304.
         | CrossRef | CAS |

[105]  D. Myung, W. Koh, J. Ko, Y. Hu, M. Carrasco, J. Noolandi, C. N. Ta, C. W. Frank, Biomimetic strain hardening in interpenetrating polymer network hydrogels Polymer 2007, 48, 5376.
         | CrossRef | CAS |

[106]  A. Nakayama, A. Kakugo, J. P. Gong, Y. Osada, M. Takai, T. Erata, S. Kawano, High mechanical strength double-network hydrogel with bacterial cellulose Adv. Funct. Mater. 2004, 14, 1124.
         | CrossRef | CAS |

[107]  I. Tranoudis, N. Efron, Tensile properties of soft contact lens materials Cont. Lens Anterior Eye 2004, 27, 177.
         | CrossRef |

[108]  B. D. Johnson, D. J. Beebe, W. C. Crone, Effects of swelling on the mechanical properties of a pH-sensitive hydrogel for use in microfluidic devices Mater. Sci. Eng. C 2004, 24, 575.
         | CrossRef |

[109]  X. Zhang, X. Guo, S. Yang, S. Tan, X. Li, H. Dai, X. Yu, X. Zhang, N. Weng, B. Jian, J. Xu, Double-network hydrogel with high mechanical strength prepared from two biocompatible polymers J. Appl. Polym. Sci. 2009, 112, 3063.
         | CrossRef | CAS |

[110]  Y. Lee, D. N. Kim, D. Choi, W. Lee, J. Park, W.-G. Koh, Preparation of interpenetrating polymer network composed of poly(ethylene glycol) and poly(acrylamide) hydrogels as a support of enzyme immobilization Polym. Adv. Technol. 2008, 19, 852.
         | CrossRef | CAS |

[111]  Y. Liu, M. Zhu, X. Liu, W. Zhang, B. Sun, Y. Chen, H.-J. P. Adler, High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics Polymer 2006, 47, 1.
         | CrossRef | CAS |

[112]  K. Haraguchi, R. Farnworth, A. Ohbayashi, T. Takehisa, Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay Macromolecules 2003, 36, 5732.
         | CrossRef | CAS |

[113]  L. Xiong, M. Zhu, X. Hu, X. Liu, Z. Tong, Ultrahigh deformability and transparency of Hectorite clay nanocomposite hydrogels with nimble pH response Macromolecules 2009, 42, 3811.
         | CrossRef | CAS |

[114]  M. Zhu, L. Xiong, T. Wang, X. Liu, C. Wang, Z. Tong, High tensibility and pH-responsive swelling of nanocomposite hydrogels containing the positively chargeable 2-(dimethylamino)ethyl methacrylate monomer React. Funct. Polym. 2010, 70, 267.
         | CrossRef | CAS |

[115]  J. Ma, L. Zhang, B. Fan, Y. Xu, B. Liang, A novel sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/Clay semi-IPN nanocomposite hydrogel with improved response rate and mechanical properties J. Polym. Sci., B, Polym. Phys. 2008, 46, 1546.
         | CrossRef | CAS |

[116]  X. Hu, T. Wang, L. Xiong, C. Wang, X. Liu, Z. Tong, Preferential adsorption of poly(ethylene glycol) on Hectorite clay and effects on poly(N-isopropylacrylamide)/Hectorite nanocomposite hydrogels Langmuir 2010, 26, 4233.
         | CrossRef | CAS |

[117]  L. Song, M. Zhu, Y. Chen, K. Haraguchi, Temperature- and pH-sensitive nanocomposite gels with semi-interpenetrating organic/inorganic networks Macromol. Chem. Phys. 2008, 209, 1564.
         | CrossRef | CAS |

[118]  M. Fukasawa, T. Sakai, U.-i. Chung, K. Haraguchi, Synthesis and mechanical properties of a nanocomposite gel consisting of a tetra-PEG/clay network Macromolecules 2010, 43, 4370.
         | CrossRef | CAS |

[119]  L. Xiong, X. Hu, X. Liu, Z. Tong, Network chain density and relaxation of in situ synthesized polyacrylamide/Hectorite clay nanocomposite hydrogels with ultrahigh tensibility Polymer 2008, 49, 5064.
         | CrossRef | CAS |

[120]  J. Djonlagić, Z. S. Petrović, Semi-interpenetrating polymer networks composed of poly(N-isopropyl acrylamide) and polyacrylamide hydrogels J. Polym. Sci., B, Polym. Phys. 2004, 42, 3987.
         | CrossRef |

[121]  D. Myung, D. Waters, M. Wiseman, P. E. Duhamel, J. Noolandi, C. N. Ta, C. W. Frank, Progress in the development of interpenetrating polymer network hydrogels Polym. Adv. Technol. 2008, 19, 647.
         | CrossRef | CAS |

[122]  P. D. Topham, J. R. Howse, C. J. Crook, S. P. Armes, R. A. L. Jones, A. J. Ryan, Antagonistic triblock polymer gels powered by pH oscillations Macromolecules 2007, 40, 4393.
         | CrossRef | CAS |

[123]  G. Miquelard-Garnier, D. Hourdet, C. Creton, Large strain behavior of nanostructured polyelectrolyte hydrogels Polymer 2009, 50, 481.
         | CrossRef | CAS |


   
Subscriber Login
Username:
Password:  

 


    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014