Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Material design of ionic liquids to show temperature-sensitive LCST-type phase transition after mixing with water

Yuki Kohno A , Hiroki Arai A , Shohei Saita A and Hiroyuki Ohno A B
+ Author Affiliations
- Author Affiliations

A Department of biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan

B Corresponding author. Email: ohnoh@cc.tuat.ac.jp

Australian Journal of Chemistry 64(12) 1560-1567 https://doi.org/10.1071/CH11278
Submitted: 8 July 2011  Accepted: 9 September 2011   Published: 23 November 2011

Abstract

Phosphonium cations bearing different alkyl chains were coupled with several common anions so as to prepare ionic liquids (ILs) with diverse hydrophobicity. A temperature-driven phase behaviour of the mixture of various ILs and water has been examined. A few ILs were found to exhibit temperature-sensitive lower critical solution temperature (LCST)-type phase transition after mixing with water. The phase separation temperature (Tc) of the IL/water mixtures depended strongly on the hydrophobicity of the component ions as well as mixing ratio. The number of water molecules per ion pair in the IL phase (mwater) increased dramatically upon cooling. The temperature dependence of this parameter was found to be useful to predict the possibility of the ILs to show the LCST-type phase behaviour after mixing with water. Since the value of mwater depended on the ion structure, especially on the hydrophobicity, the Tc was accurately set out by suitably mixing two ILs with different hydrophobicity.


References

[1]  J. S. Wilkes, M. J. Zaworotko, J. Chem. Soc. Chem. Commun. 1992, 965.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltlWisLg%3D&md5=3964bc2c894a8b07a01640c5e6f59e69CAS |

[2]  T. Welton, Chem. Rev. 1999, 99, 2071.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1artrw%3D&md5=c0b65bad7faa0d45aeb5f8fb4f45ba0cCAS |

[3]  N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev. 2008, 37, 123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVWhsQ%3D%3D&md5=c189ce959ebbf6c2e57e0dbc4f53dcaaCAS |

[4]  P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis 2nd Edition, 2008 (Wiley-VCH: Weinheim).

[5]  L. Crowhurst, P. R. Mawdsley, J. M. Perez-Arlandis, P. A. Salter, T. Welton, Phys. Chem. Chem. Phys. 2003, 5, 2790.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks1yrurg%3D&md5=84ae07e6d626947064af4b5714be4822CAS |

[6]  P. Bonhôte, A.-P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel, Inorg. Chem. 1996, 35, 1168.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  J. D. Holbrey, K. R. Seddon, J. Chem. Soc., Dalton Trans. 1999, 2133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXktFymtbs%3D&md5=55621c8131bf3157c58c3f11be10c35fCAS |

[8]  K. R. Seddon, A. Stark, M. J. Torres, Pure Appl. Chem. 2000, 72, 2275.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisVCgtb4%3D&md5=70d952a605bc01582b9c3164221c6fcfCAS |

[9]  P. A. Schweitzer, Handbook of Separation Techniques for Chemical Engineers, 1996 (McGraw-Hill: New York).

[10]  J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser, R. D. Rogers, Chem. Commun. (Camb.) 1998, 1765.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltVCiu78%3D&md5=45b929922051d05ca3387e6ce55b46bdCAS |

[11]  S. Dai, Y. H. Ju, C. E. Barnes, J. Chem. Soc., Dalton Trans. 1999, 1201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1ylsbg%3D&md5=7110d2fe30e9b23b95f0b4ed57004973CAS |

[12]  H. M. Luo, S. Dai, P. V. Bonnesen, A. C. Buchanan, J. D. Holbrey, N. J. Bridges, R. D. Rogers, Anal. Chem. 2004, 76, 3078.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVOit78%3D&md5=09095e7f2dd340acdfdfae9703e3f7d5CAS |

[13]  K. Shimojo, K. Nakashima, N. Kamiya, M. Goto, Biomacromolecules 2006, 7, 2.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht12rtbzK&md5=58ac25f215d9d3c53826fcf28067fa7fCAS |

[14]  K. Shimojo, N. Kamiya, F. Tani, H. Naganawa, Y. Naruta, M. Goto, Anal. Chem. 2006, 78, 7735.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCqsbnE&md5=b3acbf967ebadd11711123d5d5ee4eb6CAS |

[15]  J. E. L. Dullius, P. A. Z. Suarez, S. Einloft, R. F. de Souza, J. Dupont, J. Fischer, A. D. Cian, Organometallics 1998, 17, 815.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXovFOnsw%3D%3D&md5=05164a806155b5cb2002ca2f8c4f2f2cCAS |

[16]  P. Nockemann, B. Thijs, S. Pittois, J. Thoen, C. Glorieux, K. V. Hecke, L. V. Meervelt, B. Kirchner, K. J. Binnemans, Phys. Chem. B 2006, 110, 20978.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpslejur0%3D&md5=bce7fb5023609626715521b4a2b1ccfbCAS |

[17]  J. M. Crosthwaite, M. J. Muldoon, S. Aki, E. J. Maginn, J. F. Brennecke, J. Phys. Chem. B 2006, 110, 9354.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFWqtrk%3D&md5=ac82d3a371efc1c5d9b491e25ac080afCAS |

[18]  H. Glasbrenner, H. Weingärtner, J. Phys. Chem. 1989, 93, 3378.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitVSjsL0%3D&md5=ac9be338bc969c0f1485f6e87cbd78b5CAS |

[19]  H. Weingärtner, M. Kleemeier, S. Wiegand, W. Schröer, J. Stat. Phys. 1995, 78, 169.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  M. Kleemeier, W. Schröer, H. Weingärtner, J. Mol. Liq. 1997, 73/74, 501.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  S. Wiegand, M. Kleemeier, J.-M. Schröder, W. Schröer, H. Weingärtner, J. Thermophys. 1994, 15, 1045.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksVWltLg%3D&md5=8654492ed8096d87db00f756986d8c93CAS |

[22]  H. R. Dittmar, W. H. Schröer, J. Phys. Chem. B 2009, 113, 1249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVyitg%3D%3D&md5=f53627006f5887d2c0b6751c65c38d14CAS |

[23]  J. Łachwa, J. Szydlowski, V. N. Visak, L. P. N. Rebelo, K. R. Seddon, M. N. da Ponte, J. M. S. S. Esperança, H. J. R. Guedes, J. Am. Chem. Soc. 2005, 127, 6542.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  J. Łachwa, J. Szydlowski, A. Makowska, K. R. Seddon, J. M. S. S. Esperança, H. J. R. Guedes, L. P. N. Rebelo, Green Chem. 2006, 8, 262.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  K. Fukumoto, H. Ohno, Angew. Chem. Int. Ed. 2007, 46, 1852.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVWgt70%3D&md5=3b1d1e6c3c5de57e32791ebce2babc94CAS |

[26]  Y. Kohno, S. Saita, K. Murata, N. Nakamura, H. Ohno, Polym. Chem 2011, 2, 862.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFWnsLk%3D&md5=62454e7fd983dafda0e37acb2632fb7fCAS |

[27]  Y. Kohno, H. Arai, H. Ohno, Chem. Commun. (Camb.) 2011, 47, 4772.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktF2nurw%3D&md5=9e76a54d8d9ced2f81e41aad75a99320CAS |

[28]  Y. Fukaya, K. Sekikawa, K. Murata, N. Nakamura, H. Ohno, Chem. Commun. (Camb.) 2007, 3089.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVCis7s%3D&md5=bb1fbf219fe4f6c0dfecbef919b317d8CAS |

[29]  J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G. A. Broker, R. D. Rogers, Green Chem. 2001, 3, 156.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVWhsr8%3D&md5=5f50f530e1611ee9752203dcd2a9d460CAS |

[30]  J. Kagimoto, S. Taguchi, K. Fukumoto, H. Ohno, J. Mol. Liq. 2010, 153, 133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksFSgsb8%3D&md5=4ddeb38939ba82f65fc472fd789cf6a9CAS |

[31]  K. J. Fraser, D. R. MacFarlane, Aust. J. Chem. 2009, 62, 309.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVyqu70%3D&md5=2988519380403be7b923b05cca7208c7CAS |

[32]  K. Tsunashima, M. Sugiya, Electrochemistry 2007, 75, 734.
         | 1:CAS:528:DC%2BD2sXhtVClsb%2FP&md5=63686e24b12828d298b5b6e94b71fb31CAS |