Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Characterisation of Calmodulin Structural Transitions by Ion Mobility Mass Spectrometry

Antonio N. Calabrese A , Lauren A. Speechley A and Tara L. Pukala A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry & Physics, The University of Adelaide, Adelaide, SA 5005, Australia.

B Corresponding author. Email: tara.pukala@adelaide.edu.au

Australian Journal of Chemistry 65(5) 504-511 https://doi.org/10.1071/CH12047
Submitted: 27 January 2012  Accepted: 7 April 2012   Published: 8 May 2012

Abstract

This study demonstrates the ability of travelling wave ion mobility-mass spectrometry to measure collision cross-sections of ions in the negative mode, using a calibration based approach. Here, negative mode ion mobility-mass spectrometry was utilised to understand structural transitions of calmodulin upon Ca2+ binding and complexation with model peptides melittin and the plasma membrane Ca2+ pump C20W peptide. Coexisting calmodulin conformers were distinguished on the basis of their mass and cross-section, and identified as relatively folded and unfolded populations, with good agreement in collision cross-section to known calmodulin geometries. Titration of calcium tartrate to physiologically relevant Ca2+ levels provided evidence for intermediately metalated species during the transition from apo- to holo-calmodulin, with collision cross-section measurements indicating that higher Ca2+ occupancy is correlated with more compact structures. The binding of two representative peptides which exemplify canonical compact (melittin) and extended (C20W) peptide-calmodulin binding models has also been interrogated by ion mobility mass spectrometry. Peptide binding to calmodulin involves intermediates with metalation states from 1–4 Ca2+, which demonstrate relatively collapsed structures, suggesting neither the existence of holo-calmodulin or a pre-folded calmodulin conformation is a prerequisite for binding target peptides or proteins. The biological importance of the different metal unsaturated calmodulin complexes, if any, is yet to be understood.


References

[1]  A. Catalano, D. H. O’Day, Cell. Signal. 2008, 20, 277.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislKntw%3D%3D&md5=c392418baf6512847862dd9fdc9ff8c1CAS |

[2]  K. P. Lu, A. R. Means, Endocr. Rev. 1993, 14, 40.
         | 1:CAS:528:DyaK3sXitV2ktr4%3D&md5=173ed0dff316c1f2e099ac63239039e8CAS |

[3]  A. Ravindran, Q. Z. Lao, J. B. Harry, P. Abrahimi, E. Kobrinsky, N. M. Soldatov, Proc. Natl. Acad. Sci. USA 2008, 105, 8154.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1ajtbg%3D&md5=1366c846a62a8fb755b59269206a8bcfCAS |

[4]  J. D. Johnson, J. S. Mills, Med. Res. Rev. 1986, 6, 341.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XltFSmtrs%3D&md5=ce3716aeefeb1ac74cbae2d1b635cddaCAS |

[5]  Calmodulin and Cell Functions 1980 (Eds D. M. Watterson, F. F. Vincenzi) (New York Academy of Sciences: New York, NY).

[6]  A. R. Means, J. S. Tash, J. G. Chafouleas, Physiol. Rev. 1982, 62, 1.
         | 1:CAS:528:DyaL38XotFeqsA%3D%3D&md5=e763dd4c63518aa44164f6f827389d64CAS |

[7]  W. J. Chazin, Nat. Struct. Biol. 1995, 2, 707.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvFajsbw%3D&md5=43bef010b55f1068f4fbbcdce9f2f696CAS |

[8]  H. Kuboniwa, N. Tjandra, S. Grzesiek, H. Ren, C. B. Klee, A. Bax, Nat. Struct. Biol. 1995, 2, 768.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvFajtrk%3D&md5=a37392886ee8169dff4daee794d099dbCAS |

[9]  M. Zhang, T. Tanaka, M. Ikura, Nat. Struct. Biol. 1995, 2, 758.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvFajtrg%3D&md5=58d30528e4b9712c40c4515aa9f18d30CAS |

[10]  G. Barbato, M. Ikura, L. E. Kay, R. W. Pastor, A. Bax, Biochemistry – US 1992, 31, 5269.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktVaqt7s%3D&md5=c7913263883241d8e39e3d3c7b88efb0CAS |

[11]  R. Chattopadhyaya, W. E. Meador, A. R. Means, F. A. Quiocho, J. Mol. Biol. 1992, 228, 1177.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXps1GgtA%3D%3D&md5=97ba6fbf76b27ba711068ffa8a1f1932CAS |

[12]  M. Ikura, G. M. Clore, A. M. Gronenborn, G. Zhu, C. B. Klee, A. Bax, Science 1992, 256, 632.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XltVKlsr0%3D&md5=bb15c4de02dfa3c1fa51c7f0934a5b12CAS |

[13]  S. W. Vetter, E. Leclerc, Eur. J. Biochem. 2003, 270, 404.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFaht7c%3D&md5=85f5d6ac9f00941fde34426038eb4a29CAS |

[14]  A. R. Rhoads, F. Friedberg, FASEB J. 1997, 11, 331.
         | 1:CAS:528:DyaK2sXjtVWmtr8%3D&md5=a062348e7c818381220dd8364da6702bCAS |

[15]  M. Aoyagi, A. S. Arvai, J. A. Tainer, E. D. Getzoff, EMBO J. 2003, 22, 766.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1yhu78%3D&md5=ee5933288d2134ac531e5c59542e80f1CAS |

[16]  B. Elshorst, M. Hennig, H. Forsterling, A. Diener, M. Maurer, P. Schulte, H. Schwalbe, C. Griesinger, J. Krebs, H. Schmid, T. Vorherr, E. Carafoli, Biochemistry – US 1999, 38, 12320.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltl2jtr4%3D&md5=b35732eed3f97857722e8b6f8efb6a36CAS |

[17]  C. Y. Huang, V. Chau, P. B. Chock, J. H. Wang, R. K. Sharma, Proc. Natl. Acad. Sci. USA 1981, 78, 871.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhtlCrtb0%3D&md5=b9ce520ef3aa53386106e2d99dfeba9aCAS |

[18]  Y. Maulet, J. A. Cox, Biochemistry – US 1983, 22, 5680.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlvFSjsLo%3D&md5=2026b38a5fd8d61e8419f76e50dfe728CAS |

[19]  C. B. Klee, Interaction of Calmodulin with Ca2+ and Target Proteins, in Calmodulin 1988, pp. 35–56 (Eds P. Cohen, C. B. Klee) (Elsevier: New York, NY).

[20]  J. M. Shifman, M. H. Choi, S. Mihalas, S. L. Mayo, M. B. Kennedy, Proc. Natl. Acad. Sci. USA 2006, 103, 13968.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCmtbfL&md5=046c73940305b30ec12b10586d49cbeaCAS |

[21]  T. J. Hill, D. Lafitte, J. I. Wallace, H. J. Cooper, P. O. Tsvetkov, P. J. Derrick, Biochemistry – US 2000, 39, 7284.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsVaqsbo%3D&md5=748d788f80f2da47ae9db85e4886794eCAS |

[22]  H. Y. Park, S. A. Kim, J. Korlach, E. Rhoades, L. W. Kwok, W. R. Zipfel, M. N. Waxham, W. W. Webb, L. Pollack, Proc. Natl. Acad. Sci. USA 2008, 105, 542.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvV2ltw%3D%3D&md5=424305f4933d987d78e9b7dd8da41e6bCAS |

[23]  M. A. Schumacher, A. F. Rivard, H. P. Bachinger, J. P. Adelman, Nature 2001, 410, 1120.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsVCrt70%3D&md5=c7ae0681249aa12286cb73f3a93e9a01CAS |

[24]  J. Pan, L. Konermann, Biochemistry – US 2010, 49, 3477.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVeqtrg%3D&md5=4291f2ca6240974d32f754f91d009514CAS |

[25]  J. B. Sperry, R. Y. Huang, M. M. Zhu, D. L. Rempel, M. L. Gross, Int. J. Mass Spectrom. Ion Process. 2011, 302, 85.
         | 1:CAS:528:DC%2BC3MXkslGqsr4%3D&md5=49a8faed809ed7dc9367c12e8a5f9b4bCAS |

[26]  K. Dimova, S. Kalkhof, I. Pottratz, C. Ihling, F. Rodriguez-Castaneda, T. Liepold, C. Griesinger, N. Brose, A. Sinz, O. Jahn, Biochemistry – US 2009, 48, 5908.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsleis7Y%3D&md5=1c7bfff4f69bdaea3e39e105b57c31ffCAS |

[27]  T. Ly, R. R. Julian, J. Am. Soc. Mass Spectrom. 2008, 19, 1663.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlOhtb7M&md5=dcb7f0494aed31fc60ec13dab67e9a59CAS |

[28]  J. W. Wong, S. D. Maleknia, K. M. Downard, J. Am. Soc. Mass Spectrom. 2005, 16, 225.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CqtLk%3D&md5=757a36ff59aed1caecb878ba39d09bc5CAS |

[29]  O. Nemirovskiy, D. E. Giblin, M. L. Gross, J. Am. Soc. Mass Spectrom. 1999, 10, 711.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvFert70%3D&md5=ee9a0d7bf91f3886a1c760d69877efedCAS |

[30]  T. L. Pukala, T. Urathamakul, S. J. Watt, J. L. Beck, R. J. Jackway, J. H. Bowie, Rapid Commun. Mass Spectrom. 2008, 22, 3501.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOhu7vF&md5=e00f9b09dfd18a0d79559dc3b3168829CAS |

[31]  T. Wyttenbach, M. Grabenauer, K. Thalassinos, J. H. Scrivens, M. T. Bowers, J. Phys. Chem. B 2010, 114, 437.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFCnsr%2FO&md5=a6f7c19281fb4be1b91fd3d38d0ee39fCAS |

[32]  P. A. Faull, K. E. Korkeila, J. M. Kalapothakis, A. Gray, B. J. McCullough, P. E. Barran, Int. J. Mass Spectrom. 2009, 283, 140.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVSrtLw%3D&md5=0796e754ab00f596cfb761f4148870bfCAS |

[33]  S. D. Pringle, K. Giles, J. L. Wildgoose, J. P. Williams, S. E. Slade, K. Thalassinos, R. H. Bateman, M. T. Bowers, J. H. Scrivens, Int. J. Mass Spectrom. 2007, 261, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFCru7c%3D&md5=5d586c711d89f918e8d283e9118c5bf1CAS |

[34]  J. Wildgoose, T. McKenna, C. Hughes, K. Giles, S. Pringle, I. Campuzano, J. Langridge, R. H. Bateman, Mol. Cell. Proteomics 2006, 5, S14.

[35]  B. T. Ruotolo, J. L. Benesch, A. M. Sandercock, S. J. Hyung, C. V. Robinson, Nat. Protoc. 2008, 3, 1139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotFakurc%3D&md5=868dd5802373d670b4ef241257db9cf9CAS |

[36]  A. A. Shvartsburg, R. D. Smith, Anal. Chem. 2008, 80, 9689.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlemt73E&md5=1bdb1568f8d986b7c404408c90a08966CAS |

[37]  T. H. Crouch, C. B. Klee, Biochemistry – US 1980, 19, 3692.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXlt1Ogt7c%3D&md5=30165c0de3252b8687c9a65e41f55dd0CAS |

[38]  C. A. Scarff, K. Thalassinos, G. R. Hilton, J. H. Scrivens, Rapid Commun. Mass Spectrom. 2008, 22, 3297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtleiu73F&md5=d7a97feb9c9bc0ac3123a3b13ea16229CAS |

[39]  K. Thalassinos, M. Grabenauer, S. E. Slade, G. R. Hilton, M. T. Bowers, J. H. Scrivens, Anal. Chem. 2009, 81, 248.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKisLvM&md5=966d917a27f46134de17b6d86f2b4e86CAS |

[40]  D. E. Clemmer, Clemmer Collision Cross-Section Database (accessed 20 January 2012). Available from: http://www.indiana.edu/~clemmer/

[41]  M. F. Mesleh, J. M. Hunter, A. A. Shvartsburg, G. C. Schatz, M. F. Jarrold, J. Phys. Chem. 1996, 100, 16082.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsFCqu7w%3D&md5=7aea3bc34cae03cf40cfd76d292108fbCAS |

[42]  A. A. Shvartsburg, M. F. Jarrold, Chem. Phys. Lett. 1996, 261, 86.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvFKnsbk%3D&md5=c7ca577bbf78ec02e5746d444a3f7203CAS |

[43]  P. Hu, Q. Z. Ye, J. A. Loo, Anal. Chem. 1994, 66, 4190.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmsFShs7k%3D&md5=74968d7c760617356585f38ba30749c3CAS |

[44]  J. Pan, K. Xu, X. Yang, W. Y. Choy, L. Konermann, Anal. Chem. 2009, 81, 5008.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvVyru78%3D&md5=37fcc452c9cb23df4dc0c9809f1eb62aCAS |

[45]  U. A. Mirza, S. L. Cohen, B. T. Chait, Anal. Chem. 1993, 65, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXjt1al&md5=9de24be38ec76e30d3f4b5c3260648d5CAS |

[46]  I. A. Kaltashov, R. R. Abzalimov, J. Am. Soc. Mass Spectrom. 2008, 19, 1239.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyisb7N&md5=1b114a36f6ce7c33e42ca8c966465347CAS |

[47]  I. A. Kaltashov, A. Mohimen, Anal. Chem. 2005, 77, 5370.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1WqsLo%3D&md5=2cbd9f46617056a61ad7376846a65757CAS |

[48]  O. Nemirovskiy, R. Ramanathan, M. Gross, J. Am. Soc. Mass Spectrom. 1997, 8, 809.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlt1Wmu7o%3D&md5=06860df24bd094da4ca23c4d33e7e52dCAS |

[49]  P. L. Wintrode, P. L. Privalov, J. Mol. Biol. 1997, 266, 1050.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitVymsL8%3D&md5=5f800713f8e9fe45f4d28e8b9b949690CAS |

[50]  E. Jurneczko, P. E. Barran, Analyst (Lond.) 2011, 136, 20.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFajtbrN&md5=f8d35ff56c501a1832170501872a58fdCAS |

[51]  J. L. Fallon, F. A. Quiocho, Structure 2003, 11, 1303.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVOmsLk%3D&md5=3a556474a24a257a48ae4574176f6f9aCAS |

[52]  P. Novak, V. Havlicek, P. J. Derrick, K. A. Beran, S. Bashir, A. E. Giannakopulos, Eur. J. Mass Spectrom. (Chichester, Eng.) 2007, 13, 281.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlKku7jJ&md5=fff731860aa0436795e7f37e77ddfc84CAS |

[53]  T. Otosu, E. Nishimoto, S. Yamashita, J. Biochem. 2007, 142, 655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFaqsrc%3D&md5=bb0248ea6959910395916697db529500CAS |

[54]  D. M. Schulz, C. Ihling, G. M. Clore, A. Sinz, Biochemistry – US 2004, 43, 4703.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFaqs78%3D&md5=aeaea3dfd08ab28ffffb1e96312d7e83CAS |

[55]  A. Scaloni, N. Miraglia, S. Orru, P. Amodeo, A. Motta, G. Marino, P. Pucci, J. Mol. Biol. 1998, 277, 945.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivV2hu78%3D&md5=45026c886a76e7c9e1b893ec90cac9bfCAS |

[56]  R. F. Steiner, S. Albaugh, C. Fenselau, C. Murphy, M. Vestling, Anal. Biochem. 1991, 196, 120.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXks1Ors7w%3D&md5=dac603804cae9dab1e89549f9423b701CAS |

[57]  S. H. Seeholzer, M. Cohn, J. A. Putkey, A. R. Means, H. L. Crespi, Proc. Natl. Acad. Sci. USA 1986, 83, 3634.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XksFKmtrw%3D&md5=df2b41c4843ba0ce9caa336c29645b09CAS |

[58]  C. G. Caday, R. F. Steiner, Biochem. Biophys. Res. Commun. 1986, 135, 419.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xhs1eqsL8%3D&md5=5c2a26913754c3e0e38af7636eaa57b4CAS |

[59]  M. Kataoka, J. F. Head, B. A. Seaton, D. M. Engelman, Proc. Natl. Acad. Sci. USA 1989, 86, 6944.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlvV2rsbg%3D&md5=eb739d13dd5aaf5fe02d461bbf015538CAS |

[60]  J. Gsponer, J. Christodoulou, A. Cavalli, J. M. Bui, B. Richter, C. M. Dobson, M. Vendruscolo, Structure 2008, 16, 736.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslGrt74%3D&md5=466214be9359d46514b6d428e2af106fCAS |

[61]  J. L. Benesch, C. V. Robinson, Curr. Opin. Struct. Biol. 2006, 16, 245.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1Grsb0%3D&md5=c38b75e23d5faae76f371343e3a9dd1aCAS |

[62]  B. T. Ruotolo, K. Giles, I. Campuzano, A. M. Sandercock, R. H. Bateman, C. V. Robinson, Science 2005, 310, 1658.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSntLfE&md5=cc10ffbffb77b570b9fb9e563be54d2cCAS |

[63]  C. Uetrecht, C. Versluis, N. R. Watts, W. H. Roos, G. J. Wuite, P. T. Wingfield, A. C. Steven, A. J. Heck, Proc. Natl. Acad. Sci. USA 2008, 105, 9216.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFakt70%3D&md5=d09d2297c2bc7dbf3ab29f362b18a4b4CAS |

[64]  T. L. Pukala, B. T. Ruotolo, M. Zhou, A. Politis, R. Stefanescu, J. A. Leary, C. V. Robinson, Structure 2009, 17, 1235.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFanu7jL&md5=2c99a2210b99fccfcc8b317321e64c7cCAS |