Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Reduction of Copper(ii) to Copper(i) in the Copper-Curcumin Complex Induces Decomposition of Curcumin

Mandy H. M. Leung A , Pravena Mohan A , Tara L. Pukala A , Denis B. Scanlon A , Stephen F. Lincoln A and Tak W. Kee A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia.

B Corresponding author. Email: tak.kee@adelaide.edu.au

Australian Journal of Chemistry 65(5) 490-495 https://doi.org/10.1071/CH12081
Submitted: 6 February 2012  Accepted: 16 March 2012   Published: 26 April 2012

Abstract

We report the decomposition of curcumin due to reduction of Cu(ii) to Cu(i). Cu(ii) binds tightly with curcumin to form a complex which exhibits a high stability in methanol, but it decomposes readily in acetonitrile and in SDS micelles in the presence of ascorbic acid, coincident with reduction of Cu(ii) to Cu(i). In this study, the UV-Vis absorption of the Cu-curcumin complex shows a monotonic decrease as a function of time, consistent with the decomposition of curcumin. At a high copper : curcumin molar ratio of 10 : 1, the UV-Vis absorption spectrum of the Cu(ii)-curcumin complex in acetonitrile exhibits a substantial blue shift of the absorption maximum from 420 nm to 350 nm, which is indicative of a significant decrease in conjugation length of curcumin in the presence of Cu(ii). Time-dependent mass spectrometry and high performance liquid chromatography (HPLC) data are also consistent with the decomposition of curcumin as a consequence of reduction of Cu(ii) to Cu(i).


References

[1]  P. Anand, S. G. Thomas, A. B. Kunnumakkara, C. Sundaram, K. B. Harikumar, B. Sung, S. T. Tharakan, K. Misra, I. K. Priyadarsini, K. N. Rajasekharan, B. B. Aggarwal, Biochem. Pharmacol. 2008, 76, 1590.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtl2qtb7I&md5=f4ec40734a38adb2a62e7b1b02dc1193CAS |

[2]  F. Payton, P. Sandusky, W. L. Alworth, J. Nat. Prod. 2007, 70, 143.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsVylsg%3D%3D&md5=9c14b68e98ec3934c56ebd1d6c9fe538CAS |

[3]  C. D. Lao, M.-F. Demierre, V. K. Sondak, Expert Rev. Anticancer Ther. 2006, 6, 1559.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmvF2jsA%3D%3D&md5=36e5e9e821d54d27912d7155974a4395CAS |

[4]  Y. E. Marin, B. A. Wall, S. Wang, J. Namkoong, J. J. Martino, J. Suh, H. J. Lee, A. B. Rabson, C. S. Yang, S. Chen, J.-H. Ryu, Melanoma Res. 2007, 17, 274.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVKhtLbL&md5=39b7f4843d29c33139cb94c342858088CAS |

[5]  J. Odot, P. Albert, A. Carlier, M. Tarpin, J. Devy, C. Madoulet, Int. J. Cancer 2004, 111, 381.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtlKmu7Y%3D&md5=87d462b5c7daffe4e284dbe151c61a5eCAS |

[6]  D. R. Siwak, S. Shishodia, B. B. Aggarwal, R. Kurzrock, Cancer 2005, 104, 879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVSltr3I&md5=523da9fa01e1f0c4006f8c9fc7945271CAS |

[7]  R. C. Lantz, G. J. Chen, A. M. Solyom, S. D. Jolad, B. N. Timmermann, Phytomedicine 2005, 12, 445.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MzlsVOmsQ%3D%3D&md5=dc45dbf660ff8c4a7b9400b8d5bd2d2dCAS |

[8]  A. J. Ruby, G. Kuttan, K. D. Babu, K. N. Rajasekharan, R. Kuttan, Cancer Lett. 1995, 94, 79.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntFCksbs%3D&md5=18c18ee94b45cc5bf57bad4335cd747dCAS |

[9]  M. Zheng, S. Ekmekcioglu, E. T. Walch, C.-H. Tang, E. A. Grimm, Melanoma Res. 2004, 14, 165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksF2ls7w%3D&md5=04808907c36b9171471590cf3c3041faCAS |

[10]  B. B. Aggarwal, A. Kumar, A. C. Bharti, Anticancer Res. 2003, 23, 363.
         | 1:CAS:528:DC%2BD3sXislaqtLo%3D&md5=aea4fa6ef886c79035b3795b98df4a7bCAS |

[11]  F. Yang, G. P. Lim, A. N. Begum, O. J. Ubeda, M. R. Simmons, S. S. Ambegaokar, P. P. Chen, R. Kayed, C. G. Glabe, S. A. Frautschy, G. M. Cole, J. Biol. Chem. 2005, 280, 5892.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlClt7w%3D&md5=458aadfbf648f1acad553d920bf99443CAS |

[12]  M. E. Egan, M. Pearson, S. A. Weiner, V. Rajendran, D. Rubin, J. Glockner-Pagel, S. Canny, K. Du, G. L. Lukacs, M. J. Caplan, Science 2004, 304, 600.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjt1Crsrs%3D&md5=131fd2b71a1827e5cb36f7c7b4688eebCAS |

[13]  W. H. Chan, H. J. Wu, J. Cell. Biochem. 2004, 92, 200.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFequ7Y%3D&md5=8d83762125f76ee7fed790b976a5fd4eCAS |

[14]  H. K. Koon, A. W. N. Leung, K. K. M. Yue, N. K. Mak, J. Environ. Pathol. Toxicol. Oncol. 2006, 25, 205.
         | 1:CAS:528:DC%2BD28XjtV2ntr0%3D&md5=c55e627bd18a36730a1ebe9c387ce0f4CAS |

[15]  K. Park, J.-H. Lee, Oncol. Rep. 2007, 17, 537.
         | 1:CAS:528:DC%2BD2sXivF2hu70%3D&md5=5a74b1c1f1a195ef4e01e85d2e515922CAS |

[16]  http://clinicaltrials.gov/ct2/show/NCT00094445, verified 29 March 2012.

[17]  http://clinicaltrials.gov/ct2/show/NCT00099710, verified 29 March 2012.

[18]  M. Yoshino, M. Haneda, M. Naruse, H. H. Htay, R. Tsubouchi, S. L. Qiao, W. H. Li, K. Murakami, T. Yokochi, Toxicol. In Vitro 2004, 18, 783.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotF2gtr4%3D&md5=a03069900d968aeb4bc76994fe0b124eCAS |

[19]  H. Ahsan, S. M. Hadi, Cancer Lett. 1998, 124, 23.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnt12nsQ%3D%3D&md5=6a75d8793a24cecac44bdfc36fcc8f1fCAS |

[20]  H. Ahsan, N. Parveen, N. U. Khan, S. M. Hadi, Chem. Biol. Interact. 1999, 121, 161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjs1Sisr0%3D&md5=8794cf88fe6baed614d22c4d49c235e0CAS |

[21]  J. R. Lou, X. X. Zhang, J. Zheng, W. Q. Ding, Anticancer Res. 2010, 30, 3249.
         | 1:CAS:528:DC%2BC3cXhtlGksbrK&md5=3c16a33eee910d6a2bc94a574d472639CAS |

[22]  K. Sakano, S. Kawanishi, Arch. Biochem. Biophys. 2002, 405, 223.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1GgtLY%3D&md5=e84d7a170e89fdf0b2969c169992842aCAS |

[23]  S.-L. Deng, W.-F. Chen, B. Zhou, L. Yang, Z.-L. Liu, Food Chem. 2006, 98, 112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1agsL4%3D&md5=3f68f1c1e8036fabfaad50ab25e87f33CAS |

[24]  W.-F. Chen, S.-L. Deng, B. Zhou, L. Yang, Z.-L. Liu, Free Radical Bio. Med. 2006, 40, 526.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVSguw%3D%3D&md5=898251f9413baabbc28e8c29e2f38f0dCAS |

[25]  A. Barik, B. Mishra, L. Shen, H. Mohan, R. M. Kadam, S. Dutta, H.-Y. Zhang, K. I. Priyadarsini, Free Radical Bio. Med. 2005, 39, 811.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXos1aisLg%3D&md5=2fb3da6d8be48c6e8d3b3241dc5fb075CAS |

[26]  D. Yoshida, Y. Ikeda, S. Nakazawa, J. Neurooncol. 1993, 16, 109.
         | Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c7hvVSltw%3D%3D&md5=ebcb32d43d60ba2955620cd34e0b26caCAS |

[27]  G. S. Girolami, P. M. Jeffries, L. H. Dubois, J. Am. Chem. Soc. 1993, 115, 1015.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXovVeiuw%3D%3D&md5=1ea7bf1a2b5201d890065812442d0039CAS |

[28]  H. K. Shin, K. M. Chi, J. Farkas, M. J. Hampdensmith, T. T. Kodas, E. N. Duesler, Inorg. Chem. 1992, 31, 424.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XnsVyhtg%3D%3D&md5=71209106333712f12c4e60b0c7046164CAS |

[29]  M. A. Addicoat, G. F. Metha, T. W. Kee, J. Comput. Chem. 2011, 32, 429.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFyisrzK&md5=01205e2a0bfd3b3bb7e75242527d594bCAS |

[30]  C. F. Chignell, P. Bilskj, K. J. Reszka, A. G. Motten, R. H. Sik, T. A. Dahl, Photochem. Photobiol. 1994, 59, 295.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXksVKgsrw%3D&md5=85f0d7cb0a68d31067660b6434d5747dCAS |

[31]  M. H. M. Leung, T. W. Kee, Langmuir 2009, 25, 5773.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjs1ahtLg%3D&md5=d03843edaed6b2f962e00fc153156bfdCAS |

[32]  T. Harada, D.-T. Pham, M. H. M. Leung, N. Huy Tien, S. F. Lincoln, C. J. Easton, T. W. Kee, J. Phys. Chem. B 2011, 115, 1268.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVOq&md5=347be6d16219cfd41ac02aa7ed60cef1CAS |

[33]  P. Kamau, R. B. Jordan, Inorg. Chem. 2001, 40, 3879.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvVSgs7o%3D&md5=a930ec4c639cc86b3ddd4d61a94e44adCAS |

[34]  I. M. Kolthoff, J. F. Coetzee, J. Am. Chem. Soc. 1957, 79, 1852.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG2sXmtFeltg%3D%3D&md5=5e020759b6c0db1db2d2d0c17a2a4142CAS |

[35]  H. H. Tønnesen, Pharmazie 2002, 57, 820.

[36]  M. F. Beers, R. G. Johnson, A. Scarpa, J. Biol. Chem. 1986, 261, 2529.
         | 1:CAS:528:DyaL28XhsVaksr4%3D&md5=48f37a2b8697ae1bbb20bc537bba5254CAS |

[37]  J. Ueda, M. Takai, Y. Shimazu, T. Ozawa, Arch. Biochem. Biophys. 1998, 357, 231.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtFyjtLg%3D&md5=cdf4cc41710bd41df4a7b133ca6cf9bfCAS |

[38]  M. Yoshino, M. Haneda, M. Naruse, K. Murakami, Mol. Genet. Metab. 1999, 68, 468.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotVGhu70%3D&md5=a9de2968fc7ded3014e1dc2385acf004CAS |