Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Continuous Flow Photochemistry for the Rapid and Selective Synthesis of 2′-Deoxy and 2′,3′-Dideoxynucleosides

Bo Shen A and Timothy F. Jamison A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

B Corresponding author. Email: tfj@mit.edu

Australian Journal of Chemistry 66(2) 157-164 https://doi.org/10.1071/CH12426
Submitted: 16 September 2012  Accepted: 8 October 2012   Published: 19 November 2012

Abstract

A new photochemical flow reactor has been developed for the photo-induced electron-transfer deoxygenation reaction to produce 2′-deoxy and 2′,3′-dideoxynucleosides. The continuous flow format significantly improved both the efficiency and selectivity of the reaction, with the streamlined multi-step sequence directly furnishing the highly desired unprotected deoxynucleosides.


References

[1]  (a) E. Ichikawa, K. Kato, Curr. Med. Chem. 2001, 8, 385.
         | 1:CAS:528:DC%2BD3MXhs1Kkurs%3D&md5=c080797fcb4777ef08a9cd0fcd6275d2CAS |
         (b) Nucleosides and Nucleotides as Antitumor and Antiviral Agents (Eds C. K. Chu, D. C. Baker) 1993 (Plenum Press: New York, NY).
         (c) G. J. Peters, Deoxynucleoside Analogs in Cancer Therapy 2006 (Humana Press: Totowa, NJ).
         (d) P. Herdwijn, Modified Nucleosides: in Biochemistry, Biotechnology and Medicine 2008 (Wiley-VCH: Weinheim).
      (e) C. Périgaud, G. Gosselin, J. L. Imbach, Nucleosides Nucleotides 1992, 11, 903.
         | Crossref | GoogleScholarGoogle Scholar |

[2]     (a) H. Vorbrüggen, C. Ruh-Pohlenz, Handbook of Nucleoside Synthesis 2001, pp. 51–60 (John Wiley & Sons, Inc: New York, NY).
      (b) D. M. Huryn, M. Okabe, Chem. Rev. 1992, 92, 1745.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) M. J. Robins, J. S. Wilson, J. Am. Chem. Soc. 1981, 103, 932.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhtVekt7s%3D&md5=9aad653d6033ca8b6d3f9d626d84ee76CAS |
      (b) M. J. Robins, J. S. Wilson, F. Hansske, J. Am. Chem. Soc. 1983, 105, 4059.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) U. Niedballa, H. Vorbrüggen, Angew. Chem. Int. Ed. Engl. 1970, 9, 461.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXks1Krt7o%3D&md5=c82aaec7eb84b787609c601657424499CAS |
      (b) H. Vorbrüggen, K. Krolikiewicz, Angew. Chem. Int. Ed. Engl. 1975, 14, 421.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Vorbrüggen, K. Krolikiewicz, B. Bennua, Chem. Ber. 1981, 114, 1234.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) M. Park, C. J. Rizzo, J. Org. Chem. 1996, 61, 6092.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltVWksbs%3D&md5=dfea205b89ad484a513b74b6181f5a88CAS |
      (b) Z. W. Wang, C. J. Rizzo, Tetrahedron Lett. 1997, 38, 8177.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. R. Prudhomme, Z. W. Wang, C. J. Rizzo, J. Org. Chem. 1997, 62, 8257.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Z. W. Wang, D. R. Prudhomme, J. R. Buck, M. Park, C. J. Rizzo, J. Org. Chem. 2000, 65, 5969.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) I. Saito, H. Ikehira, R. Kasatani, M. Watanabe, T. Matsuura, J. Am. Chem. Soc. 1986, 108, 3115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XitVOmu7Y%3D&md5=8a06fe237546cd18ab0c29e42c27372cCAS |
      (b) H. Deshayes, J. P. Pete, C. Portella, D. Scholler, J. Chem. Soc., Chem. Comm. 1975, 439.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Deshayes, J. P. Pete, C. Portella, Tetrahedron Lett. 1976, 17, 2019.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) C. Wiles, P. Watts, Chem. Commun. 2011, 47, 6512.For recent general reviews on continuous flow chemistry see:
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvVGrsb0%3D&md5=4b8316c4cedae6a3895d069494e3de5aCAS |
      (b) J. Wegner, S. Ceylan, A. Kirschning, Chem. Commun. 2011, 47, 4583.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. L. Hartman, J. P. McMullen, K. F. Jensen, Angew. Chem. Int. Ed. 2011, 50, 7502.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. I. Yoshida, H. Kim, A. Nagaki, ChemSusChem 2011, 4, 331.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) T. Illg, P. Lob, V. Hessel, Bioorg. Med. Chem. 2010, 18, 3707.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) R. L. Hartman, K. F. Jensen, Lab Chip 2009, 9, 2495.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) K. Geyer, T. Gustafsson, P. H. Seeberger, Synlett 2009, 2382.
         (h) T. Wirth, Microreactors in Organic Synthesis and Catalysis 2008 (Wiley-VCH: Weinheim).
      (i) B. P. Mason, K. E. Price, J. L. Steinbacher, A. R. Bogdan, D. T. McQuade, Chem. Rev. 2007, 107, 2300.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) P. Watts, C. Wiles, Chem. Commun. 2007, 443.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) A. Kirschning, W. Solodenko, K. Mennecke, Chem. – Eur. J. 2006, 12, 5972.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) K. Jähnisch, V. Hessel, H. Lowe, M. Baerns, Angew. Chem. Int. Ed. 2004, 43, 406.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) M. Oelgemoller, O. Shvydkiv, Molecules 2011, 16, 7522.For recent reviews on photochemistry in flow, see:
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1entbrI&md5=fce7bf88c1cc792c75dcf25e03c3c9a0CAS |
      (b) E. E. Coyle, M. Oelgemoller, Photochem. Photobiol. Sci. 2008, 7, 1313.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Matsushita, T. Ichimura, N. Ohba, S. Kumada, K. Sakeda, T. Suzuki, H. Tanibata, T. Murata, Pure Appl. Chem. 2007, 79, 1959.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) B. D. A. Hook, W. Dohle, P. R. Hirst, M. Pickworth, M. B. Berry, K. I. Booker-Milburn, J. Org. Chem. 2005, 70, 7558.For a seminal design of a flow photochemical set-up, see:
         | Crossref | GoogleScholarGoogle Scholar |
      (e) F. Lévesque, P. H. Seeberger, Angew. Chem. Int. Ed. 2012, 51, 1706.For a recent eminent example of utilizing photochemistry in flow for the synthesis of a drug, see:
         | Crossref | GoogleScholarGoogle Scholar |

[9]  B. Shen, M. W. Bedore, A. Sniady, T. F. Jamison, Chem. Commun. 2012, 48, 7444.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVOitb4%3D&md5=f1cb2c5645ae65fbc6c56301645c44edCAS |

[10]  Aluminium is best for UV reflection (>80 %). H. A. Macleod, Thin-film Optical Filters, 3rd Edn 2001, pp. 158–159 (CRC Press: Bristol).

[11]  J. F. Ambrose, L. L. Carpenter, R. F. Nelson, J. Electrochem. Soc. 1975, 122, 876.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXlsVKrsLs%3D&md5=b0e2d5b5e2c86df940e964c34cde7892CAS |

[12]  Z. Huang, K. C. Schneider, S. A. Benner, J. Org. Chem. 1991, 56, 3869.Described as capricious by Rizzo, [5d] the cytidine derivative failed in the deoxygenation reaction, which is consistent with previous studies by Benner:
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktV2hs7c%3D&md5=801b2e90e3a9cbf15318edee1e3b5fc0CAS |

[13]  (a) D. Webb, T. F. Jamison, Chem. Sci. 2010, 1, 675.For reviews, see:
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVGrtLs%3D&md5=0a1d1aaeacc075934edc50686b9b69ffCAS |
      (b) J. Wegner, S. Ceylan, A. Kirschning, Adv. Synth. Catal. 2012, 354, 17.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) A. Sniady, M. W. Bedore, T. F. Jamison, Angew. Chem. Int. Ed. 2011, 50, 2155.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVWmtLY%3D&md5=ab6da328712df343536c1566003f8aeaCAS |
      (b) K. D. Nagy, B. Shen, T. F. Jamison, K. F. Jensen, Org. Process Res. Dev. 2012, 16, 976.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B. Shen, T. F. Jamison, Org. Lett. 2012, 14, 3348.
         | Crossref | GoogleScholarGoogle Scholar |

[15]     (a) K. Wuthrich, NMR of Proteins and Nucleic Acids 1986 (John Wiley & Sons, Inc: New York, NY).
      (b) C. Kojima, E. Kawashima, T. Sekine, Y. Ishido, A. Ono, M. Kainosho, Y. Kyogoku, J. Biomol. NMR 2001, 19, 19.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  (a) E. Kawashima, Y. Aoyama, T. Sekine, E. Nakamura, M. Kainosho, Y. Kyogoku, Y. Ishido, Tetrahedron Lett. 1993, 34, 1317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvFKjsLc%3D&md5=a09ba34f69e2804d6c08033eef87d8f1CAS |
      (b) E. Kawashima, Y. Aoyama, T. Sekine, M. Miyahara, M. F. Radwan, E. Nakamura, M. Kainosho, Y. Kyogoku, Y. Ishido, J. Org. Chem. 1995, 60, 6980.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  E. Kawashima, Y. Aoyama, M. F. Radwan, M. Miyahara, T. Sekine, M. Kainosho, Y. Kyogoku, Y. Ishido, Nucleosides Nucleotides 1995, 14, 333.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtlSqurg%3D&md5=ec210ac2ff279a9ce189d0c0ae98be91CAS |