CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Chemistry   
Australian Journal of Chemistry
Journal Banner
  An international journal for chemical science
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
For Advertisers
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Covers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

Affiliated with RACI

Royal Australian Chemical Institute
Royal Australian
Chemical Institute


 

Article << Previous     |     Next >>   Contents Vol 65(12)

Detection of Advanced Glycation End-Products (AGEs) During Dry-State Storage of β-Lactoglobulin/Lactose

Sisse Jongberg A , Michael Rasmussen A B , Leif H. Skibsted A and Karsten Olsen A C

A Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark.
B Current address: Department of International Health, Immunology and Microbiology, Panum Instituttet, University of Copenhagen, Blegdamsvej 3, DK-2200 København N, Denmark.
C Corresponding author. Email: ko@life.ku.dk

Australian Journal of Chemistry 65(12) 1620-1624 http://dx.doi.org/10.1071/CH12442
Submitted: 29 June 2012  Accepted: 20 October 2012   Published: 16 November 2012


 
PDF (300 KB) $25
 Export Citation
 Print
  
Abstract

Glycation of whey proteins is primarily affected by temperature, water activity, and pH, and leads to changes of the functional and nutritional properties of the proteins. In the case of prolonged storage of mixtures of lactose and β-lactoglobulin as a model for dried dairy products under mild heat treatment (60–70°C) in a restricted water environment (aw 0.64) at pH 7, Nε-(carboxymethyl)lysine (CML) and furosine were formed concomitant with glycation of β-lactoglobulin. Indirect ELISA using polyclonal antibodies against advanced glycation end products (AGEs) was shown to correlate with analyses of CML using HPLC and may be used for quality control of dried dairy products. The glycation changed the solubility properties of the protein by forming polymeric carbohydrate products of β-lactoglobulin and AGEs as characterised by SDS–PAGE.





References

[1]  S. Damodaran, in Food Proteins and their Applications (Eds S. Damodaran, A. Paraf) 1997, pp. 57–110 (Marcel Dekker: New York, NY).

[2]  F. Chevalier, J. M. Chobert, Y. Popineau, M. G. Nicolas, T. Haertle, Int. Dairy J. 2001, 11, 145.
         | CrossRef | CAS |

[3]  A. Medrano, C. Abirached, L. Panizzolo, P. Moyna, M. C. Anon, Food Chem. 2009, 113, 127.
         | CrossRef | CAS |

[4]  M. K. Thomsen, K. Olsen, J. Otte, K. Sjøstrøm, B. B. Werner, L. H. Skibsted, Int. Dairy J. 2012, 23, 1.
         | CrossRef | CAS |

[5]  F. Morgan, D. Molle, G. Henry, A. Venien, J. Leonil, G. Peltre, D. Levieux, J. L. Maubois, S. Bouhallab, Int. J. Food Sci. Technol. 1999, 34, 429.
         | CrossRef | CAS |

[6]  S. J. French, W. J. Harper, N. M. Kleinholz, R. B. Jones, K. B. Green-Church, J. Agric. Food Chem. 2002, 50, 820.
         | CrossRef | CAS |

[7]  R. Singh, A. Barden, T. Mori, L. Beilin, Diabetologia 2001, 44, 129.
         | CrossRef | CAS |

[8]  J. M. Ames, Mol. Nutr. Food Res. 2007, 51, 1085.
         | CrossRef | CAS |

[9]  K. Sebekova, V. Somoza, Mol. Nutr. Food Res. 2007, 51, 1079.
         | CrossRef | CAS |

[10]  H. F. Erbersdobler, V. Somoza, Mol. Nutr. Food Res. 2007, 51, 423.
         | CrossRef | CAS |

[11]  J. A. B. Baptista, R. C. B. Carvalho, Food Res. Int. 2004, 37, 739.
         | CrossRef | CAS |

[12]  M. U. Ahmed, S. R. Thorpe, J. W. Baynes, J. Biol. Chem. 1986, 261, 4889.
         | CAS |

[13]  J. Hartkopf, C. Pahlke, G. Ludemann, H. F. Erbersdobler, J. Chromatogr. A 1994, 672, 242.
         | CrossRef | CAS |

[14]  S. Reddy, J. Bichler, K. J. Wells-Knecht, S. R. Thorpe, Biochemistry 1995, 34, 10872.
         | CrossRef | CAS |

[15]  F. Chevalier, J. M. Chobert, D. Molle, T. Haertle, Lait 2001, 81, 651.
         | CrossRef | CAS |

[16]  R. Krause, K. Knoll, T. Henle, Eur. Food Res. Technol. 2003, 216, 277.
         | CAS |

[17]  K. R. Kristiansen, J. Otte, R. Ipsen, K. B. Qvist, Int. Dairy J. 1998, 8, 113.
         | CrossRef | CAS |

[18]  S. Drusch, V. Faist, H. F. Erbersdobler, Food Chem. 1999, 65, 547.
         | CrossRef | CAS |

[19]  D. Aswad, Anal. Biochem. 1984, 137, 405.
         | CrossRef | CAS |

[20]  P. Resmini, L. Pellegrino, G. Battelli, Italian J. Food Sci. 1990, 3, 173.


   
Subscriber Login
Username:
Password:  

 


    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014