CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Chemistry   
Australian Journal of Chemistry
Journal Banner
  An international journal for chemical science
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
For Advertisers
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Covers
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

Affiliated with RACI

Royal Australian Chemical Institute
Royal Australian
Chemical Institute


 

Article << Previous     |     Next >>   Contents Vol 66(3)

Computational Evaluation of the Sulfonyl Radical as a Universal Leaving Group for RAFT Polymerisation*

Ganna Gryn’ova A, Tamaz Guliashvili B D, Krzysztof Matyjaszewski C and Michelle L. Coote A D

A Australian Research Council Centre of Excellence for Free Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.
B General Electric Power and Water, Water and Process Technologies, 4636 Somerton Road, Trevose, PA 19053, USA.
C Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
D Corresponding authors. Email: tamazguliasvili@yahoo.com; mcoote@rsc.anu.edu.au

Australian Journal of Chemistry 66(3) 308-313 http://dx.doi.org/10.1071/CH12452
Submitted: 1 October 2012  Accepted: 31 October 2012   Published: 17 December 2012


 
PDF (447 KB) $25
 Supplementary Material
 Export Citation
 Print
  
Abstract

The present study investigates the performance of the sulfonyl radical, i.e. SO2Ph, as a universal leaving group in reversible addition–fragmentation chain-transfer (RAFT) polymerisation. The sulfonyl radical is widely used as a radical initiator and has already been proved successful as a leaving group in an atom-transfer radical polymerisation. Our results, obtained using high-level ab initio computational methodology under relevant experimental conditions, indicate superior performance of the sulfonyl compared with a reference cyanoisopropyl group in controlling RAFT of a wide range of monomers. Importantly, the presence of sulfonyl chain ends in the polymers so formed opens attractive possibilities for further functionalisation. Potential synthetic routes to the R-sulfonyl RAFT agents are discussed.





References

[1]  W. A. Braunecker, K. Matyjaszewski, Prog. Polym. Sci. 2007, 32, 93.
         | CrossRef | CAS |

[2]  For a review, see: C. J. Hawker, A. W. Bosman, E. Harth, Chem. Rev. 2001, 101, 3661.
         | CrossRef | CAS |

[3]  For a review, see: N. V. Tsarevsky, K. Matyjaszewski, Chem. Rev. 2007, 107, 2270.
         | CrossRef | CAS |

[4]  For a review, see: G. Moad, E. Rizzardo, S. H. Thang, Aust. J. Chem. 2009, 62, 1402.
         | CrossRef | CAS |

[5]  (a) For specific structure–reactivity studies of ATRP, NMP, and RAFT respectively, see for example: W. Tang, Y. Kwak, W. Braunecker, N. V. Tsarevsky, M. L. Coote, K. Matyjaszewski, J. Am. Chem. Soc. 2008, 130, 10702.
         | CrossRef | CAS |
      (b) J. L. Hodgson, C. Y. Lin, M. L. Coote, S. R. A. Marque, K. Matyjaszewski, Macromolecules 2010, 43, 3728.
         | CrossRef |
      (c) M. L. Coote, E. H. Krenske, E. I. Izgorodina, Macromol. Rapid Commun. 2006, 27, 473.
         | CrossRef |

[6]  (a) M. L. Coote, D. J. Henry, Macromolecules 2005, 38, 5774.
         | CrossRef | CAS |
      (b) A. Theis, M. H. Stenzel, T. P. Davis, M. L. Coote, C. Barner-Kowollik, Aust. J. Chem. 2005, 58, 437.
         | CrossRef |

[7]  M. Benaglia, J. Chiefari, Y. K. Chong, G. Moad, E. Rizzardo, S. H. Thang, J. Am. Chem. Soc. 2009, 131, 6914.
         | CrossRef | CAS |

[8]  J. B. McLeary, F. M. Calitz, J. M. McKenzie, M. P. Tonge, R. D. Sanderson, B. Klumperman, Macromolecules 2004, 37, 2383.
         | CrossRef | CAS |

[9]  C. Y. Lin, S. R. A. Marque, K. Matyjaszewski, M. L. Coote, Macromolecules 2011, 44, 7568.
         | CrossRef | CAS |

[10]  M. L. Coote, D. J. Henry, Macromolecules 2005, 38, 1415.
         | CrossRef | CAS |

[11]  V. Percec, B. Barboiu, H.-J. Kim, J. Am. Chem. Soc. 1998, 120, 305.
         | CrossRef | CAS |

[12]  V. Percec, B. Barboiu, Macromolecules 1995, 28, 7970.
         | CrossRef | CAS |

[13]  Y.-R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds 2003 (CRC Press: Boca Raton, FL).

[14]  M. S. Kharasch, A. F. Zavist, J. Am. Chem. Soc. 1951, 73, 964.
         | CrossRef | CAS |

[15]  M. Asscher, D. Vofsi, J. Chem. Soc. 1964, 1964, 4962.
         | CrossRef |

[16]  A. Orochov, M. Asscher, D. Vofsi, J. Chem. Soc. Perkin Trans II 1972, II, 1000.

[17]  M. Matsuyama, M. Kamigaito, M. Sawamoto, J. Polym. Sci. A Polym. Chem. 1996, 34, 3585.
         | CrossRef |

[18]  T. Grimaud, K. Matyjaszewski, Macromolecules 1997, 30, 2216.
         | CrossRef | CAS |

[19]  B. Barboiu, V. Percec, Macromolecules 2001, 34, 8626.
         | CrossRef | CAS |

[20]  (a) Relative rates can be found in Y. Takahara, M. Iino, M. Matsuda, Bull. Chem. Soc. Jpn. 1976, 49, 2268.
         | CrossRef | CAS |
      (b) For the absolute rates of reverse reactions, see V. I. Timokhin, S. Gastaldi, M. P. Bertrand, C. Chatgilialoglu, J. Org. Chem. 2003, 68, 3532. For the absolute rates of reverse reactions, see
         | CrossRef |

[21]  (a) A. Kirschning, H. Monenschein, R. Wittenberg, Angew. Chem. Int. Ed. 2001, 40, 650.
         | CrossRef | CAS |
      (b) M. Mentel, A. M. Schmidt, M. Gorray, P. Eilbracht, R. Breinbauer, Angew. Chem. Int. Ed. 2009, 48, 5841.
         | CrossRef |

[22]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision B.01 2009 (Gaussian, Inc.: Wallingford, CT).

[23]  MOLPRO, Version 2009.1 is a package of ab initio programs written by H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz, P. Celani, T. Korona, A. Mitrushenkov, G. Rauhut, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, G. Hetzer, T. Hrenar, G. Knizia, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklaß, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, U. Schumann, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A. Wolf, MOLPRO, Version 2009.1.

[24]     (a) Q-Chem Version 3.2 2007 (Q-Chem, Inc.: Pittsburgh, PA).
      (b) Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. Distasio, R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock, Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. Distasio, R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock, Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V. Slipchenko, S. V. Levchenko, D. P. O’Neill, R. A. Distasio, R. C. Lochan, T. Wang, G. J. O. Beran, N. A. Besley, J. M. Herbert, C. Y. Lin, T. Van Voorhis, S. H. Chien, A. Sodt, R. P. Steele, V. A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E. F. C. Byrd, H. Dachsel, R. J. Doerksen, A. Dreuw, B. D. Dunietz, A. D. Dutoi, T. R. Furlani, S. R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R. Z. Khalliulin, P. Klunzinger, A. M. Lee, M. S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E. I. Proynov, P. A. Pieniazek, Y. M. Rhee, J. Ritchie, E. Rosta, C. D. Sherrill, A. C. Simmonett, J. E. Subotnik, H. L. Woodcock, Phys. Chem. Chem. Phys. 2006, 8, 3172.
         | CrossRef |

[25]  ADF2010 02, E. J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F.M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, D. P. Chong, L. Deng, R. M. Dickson, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, A. Ghysels, A. Giammona, S. J. A. van Gisbergen, A. W. Götz, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, S. Gusarov, F. E. Harris, P. van den Hoek, C. R. Jacob, H. Jacobsen, L. Jensen, J. W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M. V. Krykunov, E. van Lenthe, D. A. McCormack, A. Michalak, M. Mitoraj, J. Neugebauer, V. P. Nicu, L. Noodleman, V. P. Osinga, S. Patchkovskii, P. H. T. Philipsen, D. Post, C. C. Pye, W. Ravenek, J. I. Rodríguez, P. Ros, P. R. T. Schipper, G. Schreckenbach, J. S. Seldenthuis, M. Seth, J. G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev; (SCM, Theoretical Chemistry, Vrije Universiteit: Amsterdam, the Netherlands). Available at: http://www.scm.com

[26]  E. I. Izgorodina, C. Y. Lin, M. L. Coote, Phys. Chem. Chem. Phys. 2007, 9, 2507.
         | CrossRef | CAS |

[27]  J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.
         | CrossRef | CAS |

[28]  A scaling factor of 1.3 was adopted; additionally, radii of aromatic carbon atoms were set equal to 1.30 Å. For details, see T. Brinck, A. G. Larsen, K. M. Madsen, K. Daasbjerg, J. Phys. Chem. B 2000, 104, 9887.
         | CrossRef | CAS |

[29]  Scaling factors of the M052X/6–31G(d) method were adopted; for details, see J. P. Merrick, D. Moran, L. Radom, J. Phys. Chem. A 2007, 111, 11683.
         | CrossRef | CAS |

[30]  (a) Contribution of dispersion to the free energies of reactions R + S=C(SCH3)S–P → RS–C(SCH3)S–P was found to be 12–20 kJ mol–1 larger for the phenylsulfonyl R-group compared with cyanoisopropyl; calculated using DFT-D3 code with BJ-damping; see S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
      (b) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.
         | CrossRef |

[31]  D. J. Henry, M. B. Sullivan, L. Radom, J. Chem. Phys. 2003, 118, 4849.
         | CrossRef | CAS |

[32]  J. I. Steinfeld, J. S. Francisco, W. L. Hase, Chemical Kinetics and Dynamics 1989 (Prentice Hall: Englewood Cliffs, NJ).

[33]  (a) A. Klamt, J. Phys. Chem. 1995, 99, 2224.
         | CrossRef | CAS |
         (b) A. Klamt, COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design 2005 (Elsevier Science Ltd: Amsterdam).
      (c) A. Klamt, V. Jonas, T. Burger, J. C. W. Lohrenz, J. Phys. Chem. A 1998, 102, 5074.
         | CrossRef |

[34]  C. C. Pye, T. Ziegler, E. van Lenthe, J. N. Louwen, Can. J. Chem. 2009, 87, 790.
         | CrossRef | CAS |

[35]  E. H. Krenske, E. I. Izgorodina, M. L. Coote, in Controlled/Living Radical Polymerization: From Synthesis to Materials (Ed. K. Matyjaszewski) ACS Symp. Ser. 2006, 944, 406.

[36]  (a) M. L. Coote, Macromolecules 2004, 37, 5023..
         | CrossRef |
      (b) M. L. Coote, J. Phys. Chem. A 2005, 109, 1230.
         | CrossRef |

[37]  C. Y. Lin, M. L. Coote, Aust. J. Chem. 2011, 64, 747.
         | CAS |

[38]  Y. Kwak, R. Nicolay, K. Matyjaszewski, Macromolecules 2009, 42, 3738.
         | CrossRef | CAS |

[39]  N. Aoyagyi, T. Endo, J. Polym. Sci. A Polym. Chem. 2009, 47, 3702.
         | CrossRef |

[40]  A. Theis, M. H. Stenzel, T. P. Davis, M. L. Coote, C. Barner- Kowollik, Aust. J. Chem. 2005, 58, 437.
         | CrossRef | CAS |


   
Subscriber Login
Username:
Password:  

 


    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2015