CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Chemistry   
Australian Journal of Chemistry
Journal Banner
  An international journal for chemical science
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
For Advertisers
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Covers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

Affiliated with RACI

Royal Australian Chemical Institute
Royal Australian
Chemical Institute


 

Article << Previous     |     Next >>   Contents Vol 66(1)

Synthetic Studies Concerning the Crinine Alkaloid Haemultine

Nadia (Yuqian) Gao A , Xinghua Ma A , Laurent Petit A , Brett D. Schwartz A , Martin G. Banwell A B , Anthony C. Willis A , Ian A. Cade A and A. David Rae A

A Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200, Australia.
B Corresponding author. Email: mgb@rsc.anu.edu.au

Australian Journal of Chemistry 66(1) 30-39 http://dx.doi.org/10.1071/CH12473
Submitted: 15 October 2012  Accepted: 9 November 2012   Published: 14 January 2013


 
 Full Text
 PDF (721 KB)
 Supplementary Material
 Export Citation
 Print
  
Abstract

The racemic form, (±)-1, of the structure originally assigned to the crinine alkaloid haemultine has been prepared for the first time. A key step involved the conversion of compound (±)-4 into the isomeric cis-C3a-arylhexahydroindole (±)-3 using a Pd0-catalysed intramolecular Alder-ene reaction. The amino-alcohol (±)-2 derived from the latter compound reacted with paraformaldehyde in the presence of trifluoroacetic acid to give, via a Pictet–Spengler reaction, the target (±)-1. The diastereoisomeric Mosher esters 15 and 16 obtained by coupling the racemate (±)-1 with the R-form, 14, of the Mosher acid could be separated chromatographically and then reductively cleaved to give the enantiomerically pure compounds (+)-1 and (–)-1, respectively. The physical and spectroscopic data derived from the former enantiomer are consistent with the proposition that the title natural product is, in fact, a mixture of (+)-1 and its Δ2,3-double bond isomer.





References

[1]  S. C. Chhabra, B. L. A. Mahunnah, E. N. Mshiu, J. Ethnopharmacol. 1987, 21, 253.
         | CrossRef | CAS |

[2]  H.-G. Boit, W. Döpke, Chem. Ber. 1958, 91, 1965.
         | CrossRef | CAS |

[3]  M. M. Iwu, Handbook of African Medicinal Plants, 1993 (CRC Press: Boca Raton, FL) and references therein.

[4]  H. M. Fales, W. C. Wildman, J. Org. Chem. 1961, 26, 1617.
         | CrossRef | CAS |

[5]  H. M. Fales, W. C. Wildman, J. Am. Chem. Soc. 1958, 80, 4395.
         | CrossRef | CAS |

[6]  O. M. Abdallah, A. A. Ali, H. Itokawa, Phytochemistry 1989, 28, 3248.
         | CrossRef | CAS |

[7]  C.-K. Chen, F.-H. Lin, L.-H. Tseng, C.-L. Jiang, S.-S. Lee, J. Nat. Prod. 2011, 74, 411. Both enantiomeric forms of the crinine alkaloid framework are encountered in nature. See, for example:
         | CrossRef | CAS |

[8]  (a) L. E. Overman, S. Sugai, Helv. Chim. Acta 1985, 68, 745. For representative examples of crinine alkaloid syntheses reported over the preceding three decades or so see:
         | CrossRef | CAS |
      (b) W. H. Pearson, F. E. Lovering, Tetrahedron Lett. 1994, 35, 9173.
         | CrossRef |
      (c) C. Bru, C. Guillou, Tetrahedron 2006, 62, 9043.
         | CrossRef |
      (d) M. Bohno, K. Sugie, H. Imase, Y. B. Yusof, T. Oishi, N. Chida, Tetrahedron 2007, 63, 6977.
         | CrossRef |
      (e) N. T. Tam, J. Chang, E.-J. Jung, C.-G. Cho, J. Org. Chem. 2008, 73, 6258.
         | CrossRef |
      (f) J.-D. Liu, S.-H. Wang, F.-M. Zhang, Y.-Q. Tu, Y.-Q. Zhang, Synlett 2009, 3040. and references therein

[9]  (a) M. G. Banwell, J. E. Harvey, K. A. Jolliffe, J. Chem. Soc., Perkin Trans. 1 2001, 2002. Various syntheses of crinine alkaloids have been reported by our group see:
         | CrossRef | CAS |
      (b) A. D. Findlay, M. G. Banwell, Org. Lett. 2009, 11, 3160.
         | CrossRef |
      (c) L. Petit, M. G. Banwell, A. C. Willis, Org. Lett. 2011, 13, 5800.
         | CrossRef |

[10]  A. L. Lehmann, A. C. Willis, M. G. Banwell, Aust. J. Chem. 2010, 63, 1665.
         | CrossRef | CAS |

[11]  M. G. Banwell, N. (Y.) Gao, B. D. Schwartz, L. V. White, Top. Curr. Chem. 2012, 309, 163. For a summary of the various alkaloid syntheses that have been undertaken within our group see:
         | CrossRef | CAS |

[12]  (a) M. G. Banwell, D. A. S. Beck, P. C. Stanislawski, M. O. Sydnes, R. M. Taylor, Curr. Org. Chem. 2005, 9, 1589. For discussions on the application of gem-dihalocyclopropanes in natural product synthesis see:
         | CrossRef | CAS |
      (b) M. G. Banwell, A. L. Lehmann, R. S. Menon, A. C. Willis, Pure Appl. Chem. 2011, 83, 411.
         | CrossRef |

[13]  J. Sonnenberg, S. Winstein, J. Org. Chem. 1962, 27, 748.
         | CrossRef | CAS |

[14]  M. G. Banwell, C. J. Cowden, Aust. J. Chem. 1994, 47, 2235.
         | CrossRef | CAS |

[15]  N. Miyaura, T. Yanagi, A. Suzuki, Synth. Commun. 1981, 11, 513.
         | CrossRef | CAS |

[16]  B. M. Trost, C. Pedregal, J. Am. Chem. Soc. 1992, 114, 7292.
         | CrossRef | CAS |

[17]  A. R. Carroll, W. C. Taylor, Aust. J. Chem. 1990, 43, 1439. and references cited therein
         | CrossRef | CAS |

[18]  T. Fukuyama, C.-K. Jow, M. Cheung, Tetrahedron Lett. 1995, 36, 6373.
         | CrossRef | CAS |

[19]  T. R. Hoye, C. S. Jeffrey, F. Shao, Nat. Protoc. 2007, 2, 2451.
         | CrossRef | CAS |

[20]  W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
         | CrossRef | CAS |

[21]  A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518.
         | CrossRef | CAS |

[22]  DENZO–SMN. Z. Otwinowski, W. Minor, Processing of X-ray diffraction data collected in oscillation mode, in Methods in Enzymology, Volume 276: Macromolecular Crystallography, Part A (Eds C. W. Carter, Jr, R. M. Sweet) 1997, pp. 307–326 (Academic Press: New York, NY).

[23]  SIR92. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Cryst. 1994, 27, 435.

[24]  P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Cryst. 2003, 36, 1487.
         | CrossRef | CAS |

[25]  A. D. Rae, RAELS06, 2006 (The Australian National University: Canberra).


   
 


    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014