Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Gold Catalysis: AuCl-induced Polymerization of Styrene and n-Butylvinylether

A. Stephen K. Hashmi A B C F , Sascha Schäfer C , Verena Göker A , Claus D. Eisenbach D , Klaus Dirnberger D , Zhirong Zhao-Karger E and Patrick Crewdson E
+ Author Affiliations
- Author Affiliations

A Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.

B Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

C Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.

D Institut für Polymerchemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.

E Catalysis Research Laboratory (CaRLa) Heidelberg, Universität Heidelberg & BASF Im Neuenheimer Feld 584, 69120 Heidelberg, Germany.

F Corresponding author. Email: hashmi@hashmi.de

Australian Journal of Chemistry 67(3) 500-506 https://doi.org/10.1071/CH13562
Submitted: 16 October 2013  Accepted: 29 January 2014   Published: 24 February 2014

Abstract

Polymerization of styrene, 4-methoxystyrene, and n-butylvinylether was achieved using simple AuCl as catalyst and AgPF6 as cocatalyst. High molecular weights and low polydispersity indices were obtained. Evidence for a cationic mechanism was obtained by reactions with nucleophiles. The mechanistic study also indicates a living polymerization with the gold(i)–alkene complex as the resting species.


References

[1]  (a) J. V. Crivello, S. K. Rajaraman, J. Polym. Sci. A Polym. Chem. 1997, 35, 1593.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXislCrtrc%3D&md5=463a9dba5e7b94164e5c0640d142d24fCAS |
      (b) S. Aoshima, T. Yosida, A. Kanazawa, S. Kanaoka, J. Polym. Sci. A Polym. Chem. 2007, 45, 1801.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  E. Ihara, N. Yoshida, J. I. Ikeda, T. Itoh, K. Inoue, J. Polym. Sci. A Polym. Chem. 2006, 44, 2636.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsVyqs7Y%3D&md5=1a12f80b36ac0ba91ee5987f3f3878b7CAS |

[3]  (a) G. Dyker, Angew. Chem. Int. Ed. 2000, 39, 4237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovFCgsL4%3D&md5=f2b828da58516969038bec01af8b4f3eCAS |
      (b) A. S. K. Hashmi, Gold Bull. 2003, 36, 3.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. S. K. Hashmi, Gold Bull. 2004, 37, 51.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. Hoffmann-Röder, N. Krause, Org. Biomol. Chem. 2005, 3, 387.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) A. S. K. Hashmi, Angew. Chem. Int. Ed. 2005, 44, 6990.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) A. S. K. Hashmi, G. Hutchings, Angew. Chem. Int. Ed. 2006, 45, 7896.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) C. Della Pina, E. Falletta, M. Rossi, Catalysis 2010, 22, 279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns1yruro%3D&md5=f374db69e7c37ee49f797f5b7bfb3356CAS |
      (b) L. Sun, Y. Shi, B. Li, L. Chu, Z. He, J. Liu, Colloids Surf. A Physicochem. Eng. Asp. 2012, 397, 8.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Urbano, A. J. Hormigo, P. de Frémont, S. P. Nolan, M. M. Díaz-Requejo, P. J. Pérez, Chem. Comm. 2008, 759.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  A. S. K. Hashmi, T. D. Ramamurthi, F. Rominger, J. Organomet. Chem. 2009, 694, 592.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyqsL8%3D&md5=6a4f082ff133fbc2bc8cbdec803706ffCAS |

[6]  G. Klatt, R. Xu, M. Pernpointner, L. Molinari, T. Q. Hung, F. Rominger, A. S. K. Hashmi, H. Köppel, Chem. Eur. J. 2013, 19, 3954.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitlemsb0%3D&md5=5fec1620f5d8ea7b8e8feda8c4c6b3a6CAS | 23401385PubMed |

[7]  C.-G. Yang, C. He, J. Am. Chem. Soc. 2005, 127, 6966.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsVGgsbs%3D&md5=858d1dee0c7e8d2ab30ca51ef7a1dbcaCAS | 15884936PubMed |

[8]  (a) R. Hoffmann, Angew. Chem. Int. Ed. Engl. 1982, 21, 711.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) K. P. Hall, D. M. P. Mingos, Prog. Inorg. Chem. 1984, 32, 237.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Schmidbaur, Chem. Soc. Rev. 1995, 24, 391.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) P. Pyykkö, Angew. Chem. Int. Ed. 2004, 43, 4412.(especially pp. 4423–4424)
         | Crossref | GoogleScholarGoogle Scholar |
      (e) L. G. Kuz’mina, A. A. Bagatur’yants, A. V. Churakova, J. A. K. Howard, Chem. Commun. 2001, 1394.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  E. Genin, P. Y. Toullec, S. Antoniotti, C. Brancour, J. P. Genet, V. Michelet, J. Am. Chem. Soc. 2006, 128, 3112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVOmtL4%3D&md5=006615acdf1276136c45e53de400cb49CAS | 16522069PubMed |

[10]  A. Sen, T. W. Lai, R. R. Thomas, J. Organomet. Chem. 1988, 358, 567.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXpsFylsA%3D%3D&md5=0c88b8271b73ac7cf6de4dbc39c8374cCAS |

[11]  (a) P. Hofmann, H. Heiss, G. Müller, Z. Naturforsch. B 1987, 42, 395.
         | 1:CAS:528:DyaL1cXhtlajs7c%3D&md5=cae1e890267944e40bc85616ade7e670CAS |
         (b) P. Hofmann, H. Heiss, Ger. Offen. DE 4134772, A1 35 19920507 1992; see also Chemical Abstracts Number 117:171685.

[12]  N. Mézailles, L. Ricard, F. Gagosz, Org. Lett. 2005, 7, 4133.
         | Crossref | GoogleScholarGoogle Scholar | 16146370PubMed |

[13]  CCDC 677699 (3) and 677698 (7) contain the supplementary crystallographic data for this paper. These data can be obtained online free of charge (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223 336033; or deposit@ccdc.cam.ac.uk).

[14]  P. Pyykkö, Chem. Rev. 1997, 97, 597.
         | Crossref | GoogleScholarGoogle Scholar | 11848883PubMed |

[15]  A. S. K. Hashmi, J. P. Weyrauch, M. Rudolph, E. Kurpejovic, Angew. Chem. Int. Ed. 2004, 43, 6545.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFajsb3I&md5=72791d97c0fed960401af56a467835acCAS |

[16]  D. B. Priddy, Adv. Polym. Sci. 1994, 111, 67.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXntVWgt74%3D&md5=276d108420e2bdd36c68877d73f4d220CAS |

[17]  A. Kanazawa, Y. Hirabaru, S. Kanaoka, S. Aoshima, J. Polym. Sci. A Polym. Chem. 2006, 44, 5795.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCjt77O&md5=064c366de2406f4c1768dbbad3457456CAS |

[18]  F. Lecolley, C. Waterson, A. J. Carmichael, G. Mantovani, S. Harrisson, H. Chappell, A. Limer, P. Williams, K. Ohno, D. M. Haddleton, J. Mater. Chem. 2003, 13, 2689.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotlyqtrk%3D&md5=973e9c8b79349ce592e5cb01a68b8170CAS |

[19]  O. W. Webster, W. R. Hertler, D. Y. Sogah, W. B. Farnham, T. V. Rajan Babu, J. Am. Chem. Soc. 1983, 105, 5706.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXkslWiu7s%3D&md5=60aac187cc179eafb4bef8b4e014c892CAS |