CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Chemistry   
Australian Journal of Chemistry
Journal Banner
  An international journal for chemical science
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
For Advertisers
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Covers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

Affiliated with RACI

Royal Australian Chemical Institute
Royal Australian
Chemical Institute


 

Article << Previous     |     Next >>        Online Early    

C8H6 Thermal Chemistry. 7-Methylenecyclohepta-1,3,5-dienyne (Heptafulvyne) by Flash Vacuum Thermolysis–Matrix Isolation. Chemical Activation in the Rearrangements of Phenylenedicarbenes and of Benzocyclobutadiene to Phenylacetylene

Arvid Kuhn A , Daisuke Miura A , Hideo Tomioka B and Curt Wentrup A C

A School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia.
B Mie University, Tsu, Mie 514-8507, Japan.
C Corresponding author. Email: wentrup@uq.edu.au

Australian Journal of Chemistry - http://dx.doi.org/10.1071/CH13670
Submitted: 3 December 2013  Accepted: 6 January 2014   Published online: 28 January 2014


 
PDF (1.2 MB) $25
 Supplementary Material
 Export Citation
 Print
  
Abstract

Methylenecycloheptadienyne 11 (heptafulvyne) is obtained very cleanly by flash vacuum thermolysis (FVT) of the diazobenzocyclobutene precursor 8 at 400°C followed by isolation as a neat solid at 77 K or in an Ar matrix at 7–10 K. Compound 11 is a yellow solid, stable till ~–100°C in the neat state. The diazo compound itself (2) is observable by IR spectroscopy following mild decomposition of the tosylhydrazone salt 1 at 115°C. FVT of 8 at 200°C also generates diazo compound 2 as observed by IR spectroscopy and on-line mass spectrometry. FVT of 8 at 600–800°C causes rearrangement of 11 to phenylacetylene 12 and benzocyclobutadiene 13. Mechanisms for the rearrangements are proposed. Facile rearrangement of benzocyclobutadiene to phenylacetylene is ascribed to chemical activation, which is also seen to be involved in the rearrangement of p-, m-, and o-phenylenebiscarbenes 2527 to phenylacetylene 12.





References

[1]  A. A. Frimer, J. Weiss, Z. Rosental, J. Org. Chem. 1994, 59, 2615.

[2]  M. A. O’Leary, G. W. Richardson, D. Wege, Tetrahedron 1981, 37, 813.
         | CrossRef | CAS |

[3]  A. Nicolaides, T. Matsushita, K. Yonezawa, S. Sawai, H. Tomioka, L. L. Stracener, J. A. Hodges, R. J. McMahon, J. Am. Chem. Soc. 2001, 123, 2870.
         | CrossRef | CAS | PubMed |

[4]  T. Jørgensen, C. T. Pedersen, R. Flammang, C. Wentrup, J. Chem. Soc., Perkin Trans. 2 1997, 173.
         | CrossRef |

[5]  G. W. King, S. P. So, J. Mol. Spectrosc. 1970, 36, 468.
         | CrossRef | CAS |

[6]  O. L. Chapman, C. C. Chang, N. R. Rosenquist, J. Am. Chem. Soc. 1976, 98, 261.
         | CrossRef | CAS |

[7]  M. J. S. Dewar, K. M. Merz, J. Am. Chem. Soc. 1985, 107, 6175.
         | CrossRef | CAS |

[8]  G. H. Mitchell, F. Sondheimer, J. Am. Chem. Soc. 1969, 91, 7520.
         | CrossRef | CAS |

[9]  Enthalpy of formation of benzocyclobutadiene 97 ± 4 kcal mol–1: K. M. Broadus, S. R. Kass, J. Am. Chem. Soc. 2000, 122, 10697.
         | CrossRef | CAS |

[10]  Enthalpy of formation of phenylacetylene 73.3 ± 0.4 kcal mol–1: NIST Database, Available at www.webbook.nist.gov (accessed 8 August 2013).

[11]  P. Gerbaux, C. Wentrup, Aust. J. Chem. 2012, 65, 1655.
         | CrossRef | CAS |

[12]  H. Dürr, H. Nickels, L. A. Pacala, M. Jones, J. Org. Chem. 1980, 45, 973.
         | CrossRef |

[13]  (a) R. F. C. Brown, K. J. Harrington, G. L. McMullen, J. Chem. Soc., Chem. Commun. 1974, 123.
         | CrossRef |
      (b) R. F. C. Brown, F. W. Eastwood, G. P. Jackman, Aust. J. Chem. 1977, 30, 1757.
         | CrossRef |
      (c) R. F. C. Brown, F. W. Eastwood, G. P. Jackman, Aust. J. Chem. 1978, 31, 579.
         | CrossRef |
      (d) R. F. C. Brown, Aust. J. Chem. 2010, 63, 1002.
         | CrossRef |

[14]  I. D. Mackie, R. P. Johnson, J. Org. Chem. 2009, 74, 499.
         | CrossRef | CAS | PubMed |

[15]  M. Winkler, W. Sander, Aust. J. Chem. 2010, 63, 1013.
         | CrossRef | CAS |

[16]  See C. Wentrup, Reactive Molecules 1984 (Wiley: New York, NY), and references therein.

[17]  (a) J. A. Miller, S. J. Klippenstein, J. Phys. Chem. A 2001, 105, 7254. and references therein.
         | CrossRef | CAS |
      (b) H. Hopf, G. Markopoulos, Beilstein J. Org. Chem. 2012, 8, 1936. and references therein.
         | CrossRef |

[18]  J. J. Gajewski, Hydrocarbon Thermal Isomerizations 2004, 2nd edn (Elsevier: San Diego, CA), and references therein.

[19]  Enthalpies of formation are estimated using the method of C. Wentrup, Tetrahedron, 1974, 30, 1301. Thus ΔHf0 of 24 = 153 and 26 ~175 kcal mol–1 are derived.

[20]  C. Wentrup, Aust. J. Chem. 2013, 66, 852.
         | CrossRef | CAS |

[21]  More precise activation energies for the reactions depicted in Scheme 5 may be obtained through quantum-chemical calculations. However, multiconfigurational methods will be required in order to treat open-shell diradical states correctly.

[22]  M. W. Baum, J. L. Font, M. E. Meislich, C. Wentrup, M. Jones, J. Am. Chem. Soc. 1987, 109, 2534.
         | CrossRef | CAS |

[23]  (a) S. Matzinger, T. Bally, E. V. Patterson, R. J. McMahon, J. Am. Chem. Soc. 1996, 118, 1535.
         | CrossRef | CAS |
      (b) M. W. Wong, C. Wentrup, J. Org. Chem. 1996, 61, 7022.
         | CrossRef |
      (c) P. R. Schreiner, W. L. Karney, P. R. Schleyer, W. T. Borden, T. P. Hamilton, H. F. Schaefer, J. Org. Chem. 1996, 61, 7030.
         | CrossRef |
      (d) C. M. Geise, C. M. Hadad, J. Org. Chem. 2002, 67, 2532.
         | CrossRef |
      (e) M. J. Regimbald-Krnel, C. Wentrup, J. Org. Chem. 2013, 78, 8789.
         | CrossRef |

[24]  (a) C. Wentrup, R. Blanch, H. Briehl, G. Gross, J. Am. Chem. Soc. 1988, 110, 1874.
         | CrossRef | CAS |
      (b) D. Kvaskoff, C. Wentrup, Aust. J. Chem. 2010, 63, 1694.
         | CrossRef |
      (c) C. Wentrup, D. Kvaskoff, Aust. J. Chem. 2013, 66, 286.
         | CrossRef |

[25]  T. Mosandl, G. Macfarlane, R. Flammang, C. Wentrup, Aust. J. Chem. 2010, 63, 1076.
         | CrossRef |

[26]  J. Brown, J. R. Flammang, Y. Govaert, M. Plisnier, C. Wentrup, Y. Van Haverbeke, Rapid Commun. Mass Spectrom. 1992, 6, 249.
         | CrossRef | CAS |


   
Subscriber Login
Username:
Password:  

 


    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014