Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Quantum Coherence and its Impact on Biomimetic Light-Harvesting

Alistair J. Laos A , Paul M. G. Curmi B and Pall Thordarson A C
+ Author Affiliations
- Author Affiliations

A School of Chemistry and the Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia.

B School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia.

C Corresponding author. Email: p.thordarson@unsw.edu.au

Australian Journal of Chemistry 67(5) 729-739 https://doi.org/10.1071/CH14054
Submitted: 13 December 2013  Accepted: 11 March 2014   Published: 2 April 2014

Abstract

The survival of all photosynthetic organisms relies on the initial light harvesting step, and thus, after ~3 billion years of evolution energy capture and transfer has become a highly efficient and effective process. Here we examine the latest developments on understanding light harvesting, particularly in systems that exhibit an ultrafast energy transfer mechanism known as quantum coherence. With increasing knowledge of the structural and function parameters that produce quantum coherence in photosynthetic organisms, we can begin to replicate this process through biomimetic systems providing a faster and more efficient approach to harvesting and storing solar power for the worlds energy needs. Importantly, synthetic systems that display signs of quantum coherence have also been created and the first design principles for synthetic systems utilising quantum coherence are beginning to emerge. Recent claims that quantum coherence also plays a key role in ultrafast charge-separation highlights the importance for chemists, biologists, and material scientists to work more closely together to uncover the role of quantum coherence in photosynthesis and solar energy research.


References

[1]  E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, G. D. Scholes, Nature 2010, 463, 644.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVygu7o%3D&md5=361bcdc436d5a3e98233bb5b17543bedCAS | 20130647PubMed |

[2]  G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, G. S. Engel, Proc. Natl. Acad. Sci. USA 2010, 107, 12766.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsVagt7g%3D&md5=73554c01d72e9f4a65533bdac65d1df9CAS | 20615985PubMed |

[3]  E. Collini, G. D. Scholes, Science 2009, 323, 369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktl2gsg%3D%3D&md5=b0ea007636f4daf7c2b42ca5ac83ee2fCAS | 19150843PubMed |

[4]  D. Hayes, G. B. Griffin, G. S. Engel, Science 2013, 340, 1431.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFKlt7o%3D&md5=cc6e6660768973b370befe84f5983865CAS | 23599263PubMed |

[5]  Y.-C. Cheng, G. R. Fleming, Annu. Rev. Phys. Chem. 2009, 60, 241.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvVCktbo%3D&md5=3e833f5fab0547f52bc7b65ec9fcede9CAS | 18999996PubMed |

[6]  F. Fassioli, A. Olaya-Castro, G. D. Scholes, J. Phys. Chem. Lett. 2012, 3, 3136.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyksrrO&md5=1d6cc19d728947f08349371ee924d52fCAS |

[7]  E. Collini, Chem. Soc. Rev. 2013, 42, 4932.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1ersbs%3D&md5=ccc92593b618957b48ecab2dc932f7d9CAS | 23417162PubMed |

[8]  K. E. Dorfman, D. V. Voronine, S. Mukamel, M. O. Scully, Proc. Natl. Acad. Sci. USA 2013, 110, 2746.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFelsLo%3D&md5=6bea90e35f3ec50a9f002f6338694d4eCAS | 23365138PubMed |

[9]  I. Kassal, J. Yuen-Zhou, S. Rahimi-Keshari, J. Phys. Chem. Lett. 2013, 4, 362.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlt1Wisg%3D%3D&md5=a2285c0b44682e959dc15657dff2d432CAS |

[10]  N. Lambert, Y.-N. Chen, Y.-C. Cheng, C. Li, G.-Y. Chen, F. Nori, Nat. Phys. 2013, 9, 10.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhsl2lu7nK&md5=d77e44b37a3d3363a72c28efca515114CAS |

[11]  R. Hildner, D. Brinks, J. B. Nieder, R. J. Cogdell, N. F. van Hulst, Science 2013, 340, 1448.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpsFKlt7c%3D&md5=f8473e5cb5bc6700e4d2148c99b3462bCAS | 23788794PubMed |

[12]  M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, Science 1995, 269, 198.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmvFaju74%3D&md5=38e450fbeaec5c0c35105a2ac407c146CAS | 17789847PubMed |

[13]  V. Butkus, D. Zigmantas, L. Valkunas, D. Abramavicius, Chem. Phys. Lett. 2012, 545, 40.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GlsbfI&md5=fddc58748e43da1b496c48b3f8ea02bfCAS |

[14]  C.-P. Hsu, Acc. Chem. Res. 2009, 42, 509.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhslyjtbo%3D&md5=30132413607bc3419c51d6cf14b5ee15CAS | 19215069PubMed |

[15]  G. D. Scholes, Annu. Rev. Phys. Chem. 2003, 54, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFSgs70%3D&md5=3895c2353ec44cc51caf02bb55dc0767CAS | 12471171PubMed |

[16]  D. L. Dexter, J. Chem. Phys. 1953, 21, 836.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG3sXks12gtg%3D%3D&md5=ebdacd3e48ff00382a1bc2ec2d3ec1a9CAS |

[17]  G. D. Scholes, K. P. Ghiggino, J. Phys. Chem. 1994, 98, 4580.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisFOiurg%3D&md5=a7da016ba59180e0e73a29d474129ce6CAS |

[18]  G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mancal, Y.-C. Cheng, R. E. Blankenship, G. R. Fleming, Nature 2007, 446, 782.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXktVeqt78%3D&md5=84dfc47ebcfe5166816168786a761d64CAS | 17429397PubMed |

[19]  C. Y. Wong, R. M. Alvey, D. B. Turner, K. E. Wilk, D. A. Bryant, P. M. G. Curmi, R. J. Silbey, G. D. Scholes, Nat. Chem. 2012, 4, 396.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVehtLo%3D&md5=7909e0c245ab275f9c2ab97710da2754CAS | 22522260PubMed |

[20]  M. D. Edington, R. E. Riter, W. F. Beck, J. Phys. Chem. 1995, 99, 15699.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosVKqu7o%3D&md5=eacd018dda3f240be7a538483bf80c90CAS |

[21]  C. Curutchet, J. Kongsted, A. Muñoz-Losa, H. Hossein-Nejad, G. D. Scholes, B. Mennucci, J. Am. Chem. Soc. 2011, 133, 3078.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFeitr4%3D&md5=598eec909be70e419dc8510d0777eaa8CAS | 21322565PubMed |

[22]  A. F. Fidler, V. P. Singh, P. D. Long, P. D. Dahlberg, G. S. Engel, J. Chem. Phys. 2013, 139, 155101.
         | Crossref | GoogleScholarGoogle Scholar | 24160544PubMed |

[23]  D. B. Turner, G. D. Scholes, EPJ Web Conf. 2013, 41, 08004.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltFyktr4%3D&md5=9c20ccdc11c58549a56ff91d73750d1fCAS |

[24]  Z. B. Walters, arXiv.org, e-Print Arch., Phys. 2011, 1–19, arXiv:1108.5297v1 [physics.atom–ph].

[25]  A. B. Doust, K. E. Wilk, P. M. G. G. Curmi, G. D. Scholes, J. Photochem. Photobiol. A 2006, 184, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVOns73M&md5=fdf13a7bec055352aa4d2e73f6cb2ae2CAS |

[26]  A. B. Doust, C. N. J. Marai, S. J. Harrop, K. E. Wilk, P. M. G. Curmi, G. D. Scholes, J. Mol. Biol. 2004, 344, 135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVKktLw%3D&md5=b66ebc195a8df35302f736c7f716a787CAS | 15504407PubMed |

[27]  T. Mirkovic, K. E. Wilk, P. M. G. Curmi, G. D. Scholes, Photosynth. Res. 2009, 100, 7.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVykt7c%3D&md5=172a1bb9bfd2bbfd36ca5a52df7577c3CAS | 19224391PubMed |

[28]  C. D. van der Weij-De Wit, A. B. Doust, I. H. M. van Stokkum, J. P. Dekker, K. E. Wilk, P. M. G. Curmi, R. van Grondelle, Biophys. J. 2008, 94, 2423.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlKjsL8%3D&md5=a5b8e4cc80d8fe16680ca7622f9caa07CAS | 18024506PubMed |

[29]  R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, R. T. Sayre, Science 2011, 332, 805.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslylsLk%3D&md5=538f3c78f0a29dd826360e6c74e92234CAS | 21566184PubMed |

[30]  R. E. Blankenship, Molecular Mechanisms in Photosynthesis 2002 (Blackwell Science: Oxford).

[31]  C. P. Deblois, A. Marchand, P. Juneau, PLoS ONE 2013, 8, e57139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltFSktro%3D&md5=7118a9ad20a3efb24d0fbb5d6b71d86aCAS | 23526934PubMed |

[32]  A. W. D. Larkum, J. Barrett, Adv. Bot. Res. 1983, 10, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXkt1Sms7o%3D&md5=8878e7a0fbc953bf3503881011fd884bCAS |

[33]  D. Beljonne, C. Curutchet, G. D. Scholes, R. J. Silbey, J. Phys. Chem. B 2009, 113, 6583.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFGgtrs%3D&md5=8951cdd87889992309c0984643008e10CAS | 19331333PubMed |

[34]  L.-N. Liu, A. T. Elmalk, T. J. Aartsma, J.-C. Thomas, G. E. M. Lamers, B. C. Zhou, Y. H. Zhang, PLoS One 2008, 3, e3134.
         | Crossref | GoogleScholarGoogle Scholar | 18769542PubMed |

[35]  S. E. Douglas, Biosystems 1992, 28, 57.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXisVyqt78%3D&md5=5f05c923330ac720d4d739c7e8b51fe6CAS | 1292667PubMed |

[36]  G. I. McFadden, J. Phycol. 2001, 37, 951.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  B. L. Clay, P. Kugrens, R. E. Lee, Bot. J. Linn. Soc. 1999, 131, 131.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  L. Spear-Bernstein, K. Miller, J. Phycol. 1989, 25, 412.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmtFWlsr8%3D&md5=c5ad1ddbf7103a9f69b98b30f0f01084CAS |

[39]  T. Larkum, C. J. Howe, Adv. Bot. Res. 1997, 27, 257.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnt12msr0%3D&md5=548489d9c27e1934abd824b1db528185CAS |

[40]  K. E. Wilk, S. J. Harrop, L. Jankova, D. Edler, G. Keenan, F. Sharples, R. G. Hiller, P. M. Curmi, Proc. Natl. Acad. Sci. USA 1999, 96, 8901.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVeqsb4%3D&md5=aa0b75907a9614a2e52e458ee47306e8CAS | 10430868PubMed |

[41]  P. F. Tian, D. Keusters, Y. Suzaki, W. S. Warren, Science 2003, 300, 1553.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlKrur4%3D&md5=b6f89a22b41da6437d7f4b07fee164d5CAS |

[42]  E. Harel, A. F. Fidler, G. S. Engel, Proc. Natl. Acad. Sci. USA 2010, 107, 16444.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1WktrnL&md5=165d4752c94f335360d5ffb3d5d9e543CAS | 20810917PubMed |

[43]  J. D. Hybl, A. Albrecht Ferro, D. M. Jonas, J. Chem. Phys. 2001, 115, 6606.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1amsr0%3D&md5=496da144ecd86f29b1951a15c88bb3daCAS |

[44]  M. Cho, Chem. Rev. 2008, 108, 1331.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjslSgtb8%3D&md5=6957a6357d6730f8cc56fb0f050b9325CAS | 18363410PubMed |

[45]  D. M. Jonas, Annu. Rev. Phys. Chem. 2003, 54, 425.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFSgsLs%3D&md5=fa6e7d5acaebb9bedf7f74339a5619f0CAS | 12626736PubMed |

[46]  M. L. Cowan, J. P. Ogilvie, R. J. D. Miller, Chem. Phys. Lett. 2004, 386, 184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVKis7c%3D&md5=21c825162042177269c14eed21bcc5f6CAS |

[47]  A. S. Davydov, Sov. Phys. Jetp – USSR 1964, 7, 145.

[48]  A. S. Davydov, Zh. Eksp. Teor. Fiz. Pis’ma Red. 1948, 18, 210.
         | 1:CAS:528:DyaH1MXisVKjtg%3D%3D&md5=b43c93830320cab84bec29aa16e166caCAS |

[49]  M. Kasha, Radiat. Res. 1963, 20, 55.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXmsVM%3D&md5=6134274972fd2294de0b7cbe39832182CAS | 14061481PubMed |

[50]  G. D. Scholes, G. R. Fleming, A. Olaya-Castro, G. R. Van, R. van Grondelle, Nat. Chem. 2011, 3, 763.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1ajurzF&md5=8f182640488a793f53171f446521b8b9CAS | 21941248PubMed |

[51]  J. Wu, F. Liu, Y. Shen, J. Cao, R. J. Silbey, New J. Phys. 2010, 12, 105012.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  J. M. Dawlaty, A. Ishizaki, A. K. De, G. R. Fleming, Philos. T. Roy. Soc. A 2012, 370, 3672.
         | Crossref | GoogleScholarGoogle Scholar |

[53]  H. Lee, Y.-C. Cheng, G. R. Fleming, Science 2007, 316, 1462.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtFSjsbs%3D&md5=1728a0c54a4d02898f850d6a81ec06c9CAS | 17556580PubMed |

[54]  D. B. Turner, K. E. Wilk, P. M. G. Curmi, G. D. Scholes, J. Phys. Chem. Lett. 2011, 2, 1904.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXovFKlt7k%3D&md5=6b84198d660cfeafcc1d307c7c6172a1CAS |

[55]  T. R. Calhoun, N. S. Ginsberg, G. S. Schlau-Cohen, Y.-C. Cheng, M. Ballottari, R. Bassi, G. R. Fleming, J. Phys. Chem. B 2009, 113, 16291.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1yntLnP&md5=446965a9ef7d4dde7c1f204b54830d4bCAS | 20014871PubMed |

[56]  R. P. Feynman, Rev. Mod. Phys. 1948, 20, 367.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  R. van Grondelle, V. I. Novoderezhkin, Nature 2010, 463, 614.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVynsLs%3D&md5=21cc3b7c3e544b7ada2eaac49dcf7050CAS | 20130637PubMed |

[58]  G. D. Scholes, Nat. Phys. 2010, 6, 402.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslChs7Y%3D&md5=c478a283c43321ef0962997488ee9c2aCAS |

[59]  B. Drop, M. Webber-Birungi, S. N. K. Yadav, A. Filipowicz-Szymanska, F. Fusetti, E. J. Boekema, R. Croce, Biochim. Biophys. Acta 2014, 1837, 63.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWjs7nN&md5=c05cd9c5877761d38c0a9e9d1ad0e2a7CAS | 23933017PubMed |

[60]  G. H. Richards, K. E. Wilk, P. M. G. Curmi, H. M. Quiney, J. A. Davis, J. Phys. Chem. Lett. 2012, 3, 272.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktVCrsw%3D%3D&md5=2bf24752e6de99e734625d7e2eb0a6ffCAS |

[61]  P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, A. Aspuru-Guzik, New J. Phys. 2009, 11, 033003.
         | Crossref | GoogleScholarGoogle Scholar |

[62]  M. N. Paddon-Row, Acc. Chem. Res. 1994, 27, 18.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtlehtbg%3D&md5=76ca9be3b276fef471304b635b7be536CAS |

[63]  R. N. Warrener, D. Margetic, G. Sun, A. S. Amarasekara, P. Foley, D. N. Butler, R. A. Russell, Tetrahedron Lett. 1999, 40, 4111.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjt1Whurg%3D&md5=e66442cd5008c16f39449735f3004c76CAS |

[64]  D. N. Congreve, J. Lee, N. J. Thompson, E. Hontz, S. R. Yost, P. D. Reusswig, M. E. Bahlke, S. Reineke, T. Van Voorhis, M. A. Baldo, Science 2013, 340, 334.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlvVKhtbg%3D&md5=19aea8bfaa62102488bd2c2b1df0993cCAS | 23599489PubMed |

[65]  W.-L. Chan, T. C. Berkelbach, M. R. Provorse, N. R. Monahan, J. R. Tritsch, M. S. Hybertsen, D. R. Reichman, J. Gao, X.-Y. Zhu, Acc. Chem. Res. 2013, 46, 1321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlslahsLs%3D&md5=73636ef6ba8c18c4490e0009563a2144CAS | 23581494PubMed |

[66]  W. L. Chan, M. Ligges, A. Jailaubekov, L. Kaake, L. Miaja-Avila, X.-Y. Zhu, Science 2011, 334, 1541.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1aju7vP&md5=efc790aca943193d3b5b5e3da1f9526cCAS | 22174249PubMed |

[67]  S. Gélinas, A. Rao, A. Kumar, S. L. Smith, A. W. Chin, J. Clark, T. S. van der Poll, G. C. Bazan, R. H. Friend, Science 2014, 343, 512.
         | Crossref | GoogleScholarGoogle Scholar | 24336568PubMed |

[68]  L. G. Kaake, D. Moses, A. J. Heeger, J. Phys. Chem. Lett. 2013, 4, 2264.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVWhu73J&md5=36058fc3cde575fa1782f54e2589c005CAS |

[69]  S. Mukamel, J. Phys. Chem. A 2013, 117, 10563.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCgt7vN&md5=4097ce9cc8b6adf082f609b25f106b35CAS | 24032455PubMed |