Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Novel Tartrate-Based Guanidines for Enantioselective Fluorination of 1,3-Dicarbonyl and α-Cyano Carbonyl Compounds

Liwei Zou A , Xiaoze Bao A , Huanrui Zhang A , Yuming Song A , Jingping Qu A and Baomin Wang A B
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China.

B Corresponding author. Email: bmwang@dlut.edu.cn

Australian Journal of Chemistry 67(7) 1115-1118 https://doi.org/10.1071/CH14179
Submitted: 31 March 2014  Accepted: 28 April 2014   Published: 21 May 2014

Abstract

A novel library of chiral guanidines featuring the tartaric acid skeleton is easily accessed with tunable steric and electronic properties. A guanidine molecule of this library with an incorporated 2,6-diisoaniline fragment was identified as a suitable promoter for the enantioselective fluorination of 1,3-dicarbonyl and α-cyano carbonyl compounds to furnish the fluorinated product with up to 84 % ee and 99 % yield using N-fluorobenzenesulfonimide (NFSI) as the fluorinating agent.


References

[1]  (a) For recent reviews, see: T. Ishikawa, T. Kumamoto, Synthesis 2006, 737.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) D. Leow, C.-H. Tan, Chem. Asian J. 2009, 4, 488.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. P. Coles, Chem. Commun. 2009, 3659.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Y. Sohtome, K. Nagasawa, Synlett 2010, 1.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) D. Leow, C.-H. Tan, Synlett 2010, 1589.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) T. Ishikawa, Chem. Pharm. Bull. 2010, 58, 1555.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) P. Selig, Synthesis 2013, 45, 703.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) For selected recent examples, see: E. J. Corey, M. J. Grogan, Org. Lett. 1999, 1, 157.
         | Crossref | GoogleScholarGoogle Scholar | 10822552PubMed |
      (b) Y. Sohtome, Y. Hashimoto, K. Nagasawa, Adv. Synth. Catal. 2005, 347, 1643.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) W. Ye, D. Leow, S. L. M. Goh, C.-T. Tan, C.-H. Chian, C.-H. Tan, Tetrahedron Lett. 2006, 47, 1007.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) Z. Yu, X. Liu, L. Zhou, L. Lin, X. Feng, Angew. Chem. Int. Ed. 2009, 48, 5195.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) T. Misaki, G. Takimoto, T. Sugimura, J. Am. Chem. Soc. 2010, 132, 6286.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) M. Terada, H. Ube, Y. Yaguchi, J. Am. Chem. Soc. 2006, 128, 1454.
         | Crossref | GoogleScholarGoogle Scholar | 16448108PubMed |
      (b) M. Terada, M. Nakano, H. Ube, J. Am. Chem. Soc. 2006, 128, 16044.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  T. P. Yoon, E. N. Jacobsen, Science 2003, 299, 1691.
         | Crossref | GoogleScholarGoogle Scholar | 12637734PubMed |

[5]  (a) L. Zou, B. Wang, H. Mu, H. Zhang, Y. Song, J. Qu, Org. Lett. 2013, 15, 3106.
         | Crossref | GoogleScholarGoogle Scholar | 23758045PubMed |
      (b) L. Zou, X. Bao, Y. Ma, Y. Song, J. Qu, B. Wang, Chem. Commun. 2014, 50, 5760.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  L. Hintermann, A. Togni, Angew. Chem. Int. Ed. 2000, 39, 4359.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) Y. Hamashima, K. Yagi, H. Takano, L. Tams, M. Sodeoka, J. Am. Chem. Soc. 2002, 124, 14530.
         | Crossref | GoogleScholarGoogle Scholar | 12465951PubMed |
      (b) R. Frantz, L. Hintermann, M. Perseghini, D. Broggini, A. Togni, Org. Lett. 2003, 5, 1709.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Hamashima, H. Takano, D. Hotta, M. Sodeoka, Org. Lett. 2003, 5, 3225.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J.-A. Ma, D. Cahard, J. Fluor. Chem. 2004, 125, 1357.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) N. Shibata, T. Ishimaru, T. Nagai, J. Kohno, T. Toru, Synlett 2004, 10, 1703.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) J.-A. Ma, D. Cahard, Tetrahedron: Asymmetry 2004, 15, 1007.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) N. Shibata, J. Kohno, K. Takai, T. Ishimaru, S. Nakamura, T. Toru, S. Kanemasa, Angew. Chem. Int. Ed. 2005, 44, 4204.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) H. R. Kim, D. Y. Kim, Tetrahedron Lett. 2005, 46, 3115.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) S. Suzuki, H. Furuno, Y. Yokoyama, J. Inanaga, Tetrahedron: Asymmetry 2006, 17, 504.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) T. Suzuki, T. Goto, Y. Hamashima, M. Sodeoka, J. Org. Chem. 2007, 72, 246.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) K. Shibatomi, Y. Tsuzuki, S. i. Nakata, Y. Sumikawa, S. Iwasa, Synlett 2007, 0551.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) Q.-H. Deng, H. Wadepohl, L. H. Gade, Chem. – Eur. J. 2011, 17, 14922.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) D. Y. Kim, E. J. Park, Org. Lett. 2002, 4, 545.
         | Crossref | GoogleScholarGoogle Scholar | 11843587PubMed |
      (b) X. Wang, Q. Lan, S. Shirakawa, K. Maruoka, Chem. Commun. 2010, 46, 321.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. Xu, Y. Hu, D. Huang, K.-H. Wang, C. Xu, T. Niu, Adv. Synth. Catal. 2012, 354, 515.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) E. M. Tanzer, W. B. Schweizer, M. O. Ebert, R. Gilmour, Chem. – Eur. J. 2012, 18, 2006.
         | Crossref | GoogleScholarGoogle Scholar |