Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

An Exploration of Organocatalyst 1,4-Diazabicyclo[2.2.2]octane in the Direct Regioselective and Chemoselective γ-Addition of β-Keto Amide on Isatin to Afford Structurally Diverse Molecular Frameworks

Pramod B. Thakur A and Harshadas M. Meshram A B
+ Author Affiliations
- Author Affiliations

A Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.

B Corresponding author. Email: hmmeshram@yahoo.com

Australian Journal of Chemistry 68(3) 453-460 https://doi.org/10.1071/CH14239
Submitted: 13 April 2014  Accepted: 11 June 2014   Published: 29 September 2014

Abstract

An efficient protocol promoted by 1,4‐diazabicyclo[2.2.2]octane is described for the regioselective and chemoselective γ-addition of β-keto amides on isatins to afford γ-(3-hydroxy-2-oxindole)-β-keto amide structural framework under metal-free conditions. The developed method is mild, generates high yields, and is applicable for a variety of isatin electrophiles as well as β-keto amides. Moreover, the procedure is very handy and environmentally benign in nature, and provides direct access for the synthesis of diverse functionalized 3-β-keto amide-substituted 3-hydroxy-2-oxindole structural scaffolds from readily available starting materials.


References

[1]  (a) S. Peddibhotla, Curr. Bioact. Compd. 2009, 5, 20.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks1Cgt7g%3D&md5=b228ffd034bf50984994886afb41c67eCAS |
      (b) S. Hibino, T. Choshi, Nat. Prod. Rep. 2001, 18, 66.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) T. Tokunaga, W. E. Hume, T. Umezome, K. Okazaki, Y. Ueki, K. Kumagai, S. Hourai, J. Nagamine, H. Seki, M. Taiji, H. Noguchi, R. Nagata, J. Med. Chem. 2001, 44, 4641.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotlKkurs%3D&md5=52a6a3d458c9db3a999e6886f9800cd1CAS | 11741481PubMed |
      (b) P. Hewawasam, N. A. Meanwell, V. K. Gribkoff, S. I. Dworetzky, C. G. Boissard, Bioorg. Med. Chem. Lett. 1997, 7, 1255.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) N. Boechat, W. B. Kover, V. Bongertz, M. M. Bastos, N. C. Romeiro, M. L. G. Azavedo, W. Wollinger, J. Med. Chem. 2007, 3, 533.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) P. Hewawasam, M. Erway, S. L. Moon, J. Knipe, H. Weiner, C. G. Boissard, D. J. Post-Munson, Q. Gao, S. Huang, V. K. Gribkoff, N. A. Meanwell, J. Med. Chem. 2002, 45, 1487.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  F. Zhou, Y. L. Liu, J. Zhou, Adv. Synth. Catal. 2010, 352, 1381.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVOitr4%3D&md5=9dde58de7e8545d1e4a9e3cb186db3dbCAS |

[4]  (a) For selected examples, see: S. Lee, J. F. Hartwig, J. Org. Chem. 2001, 66, 3402.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivVynt70%3D&md5=79c87a3d7839fd0cad171ca4fe0ce3afCAS | 11348123PubMed |
      (b) A. B. Dounay, K. Hatanaka, J. J. Kodanko, M. Oestreich, L. E. Overman, L. A. Pfeifer, M. M. Weiss, J. Am. Chem. Soc. 2003, 125, 6261.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) I. D. Hills, G. C. Fu, Angew. Chem. Int. Ed. 2003, 42, 3921.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) B. M. Trost, M. U. Frederiksen, Angew. Chem. Int. Ed. 2005, 44, 308.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) Y. X. Jia, J. M. Hillgren, E. L. Watson, S. P. Marsden, E. P. Kündig, Chem. Commun. 2008, 4040.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) Y. X. Jia, E. P. Kündig, Angew. Chem. Int. Ed. 2009, 48, 1636.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) K. Ding, Y. Lu, Z. Nikolovska-Coleska, G. Wang, S. Qiu, S. Shangary, W. Gao, D. Qin, J. Stuckey, K. Krajewski, P. P. Roller, S. Wang, J. Med. Chem. 2006, 49, 3432.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFKksrc%3D&md5=b283e5224081fd06abbc144fffb5813aCAS | 16759082PubMed |
      (b) G. B. Yeoh, K. C. Chan, F. Morsingh, Rev. Pure Appl. Chem. 1967, 17, 49.
         (c) J. S. Bindra, in Alkaloid Chemistry and Physiology (Ed. R. H. F. Manske) 1973, Vol. 14, pp. 83–121 (Academic Press: New York, NY).

[6]  T. Sengupta, K. S Gayen, P. Pandit, D. K Maiti, Chem. – Eur. J. 2012, 18, 1905.and references cited therein.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFahsrc%3D&md5=ee366428616a5f16168b5b73a7a28187CAS | 22266708PubMed |

[7]  (a) S. V. Ukhov, M. E. Konshin, Chem. Heterocycl. Compd. 1988, 24, 531.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) S. V. Ukhov, M. E. Konshin, Khim. Geterotsikl. Soedin. 1988, 24, 652.
      (c) K. Hassan, Z. Masoumeh, H. Sanaz, R. M. Kurosh, Lett. Org. Chem. 2010, 7, 127.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) P. Melchiorre, Angew. Chem. Int. Ed. 2012, 51, 9748.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtF2nsr7L&md5=e3937c7c2d92c65f9fdde5bfabffa846CAS |
      (b) S. Bertelsen, K. A. Jorgensen, Chem. Commun. 2009, 2178.
      (c) P. Melchiorre, M. Marigo, A. Carlone, G. Bartoli, Angew. Chem. Int. Ed. 2008, 47, 6138.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chem. Rev. 2007, 107, 5471.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) G. Lelais, D. W. C. MacMillan, Aldrichimica Acta 2006, 39, 79.

[9]  (a) B. Baghernejad, Eur. J. Chem. 2010, 1, 54.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsVWlsr8%3D&md5=7b315c9acb1896617e08fff9ee5734e6CAS |
      (b) H. Yang, R. Tian, Y. Li, Front. Chem. China 2008, 3, 279.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) P. B. Thakur, K. Sirisha, A. V. S. Sarma, J. B. Nanubolu, H. M. Meshram, Tetrahedron 2013, 69, 6415.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFKltrg%3D&md5=7764f0e0069daa4dd868cfd98a502442CAS |
      (b) H. M. Meshram, P. B. Thakur, M. B. Bejjam, V. M. Bangade, Green Chem. Lett. Rev. 2013, 6, 19.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) P. B. Thakur, H. M. Meshram, RSC Adv. 2014, 4, 5343.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) P. B. Thakur, H. M. Meshram, RSC Adv. 2014, 4, 6019.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) P. B. Thakur, K. Sirisha, A. V. S. Sarma, H. M. Meshram, Tetrahedron Lett. 2014, 55, 2459.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) P. B. Thakur, J. B. Nanubolu, H. M. Meshram, Aust. J. Chem. 2014, 67, 768.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  (a) H. M. Meshram, B. C. Reddy, B. R. V. Prasad, P. R. Goud, G. S. Kumar, N. R. Kumar, Synth. Commun. 2012, 42, 1669.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFynsrw%3D&md5=35c5caed5aaa7fa954d654fa0e26e1c6CAS |
      (b) H. M. Meshram, G. S. Kumar, P. Ramesh, B. C. Reddy, Tetrahedron Lett. 2010, 51, 2580.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. M. Meshram, V. M. Bangade, B. C. Reddy, G. S. Kumar, P. B. Thakur, Int. J. Org. Chem. 2012, 02, 159.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  H. Liu, H. Wu, Z. Luo, J. Shen, G. Kang, B. Liu, Z. Wan, J. Jiang, Chem. – Eur. J. 2012, 18, 11899.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOmtL3F&md5=096e62f26d76fc44ea8ab82036767e7bCAS | 22890964PubMed |

[13]  (a) Z. Jin, X. Wang, H. Huang, X. Liang, J. Ye, Org. Lett. 2011, 13, 564.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmtVehtA%3D%3D&md5=19e6ed728902e9dd614057fc938b0c0bCAS | 21235266PubMed |
      (b) J. Franzén, A. Fisher, Angew. Chem. Int. Ed. 2009, 48, 787.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. W. Pilling, J. Böhmer, D. J. Dixon, Chem. Commun. 2008, 832.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. W. Pilling, J. Böhmer, D. J. Dixon, Angew. Chem. Int. Ed. 2007, 46, 5428.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  (a) J. Bi, Z. Zhang, Q. Liu, G. Zhang, Green Chem. 2012, 14, 1159.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVKktL8%3D&md5=e46e4e237b69f8356fdc5bd2958fcc87CAS |
      (b) P. Yu, Y. Zu, Y. Fu, T. Efferth, Molecules 2011, 16, 4500.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. M. Kormos, R. M. Hull, N. E. Leadbeater, Aust. J. Chem. 2009, 62, 51.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) V. L. Gein, M. I. Kazantseva, A. A. Kurbatova, Russ. J. Org. Chem. 2011, 47, 1123.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) B. Zhou, X. Li, Y. Li, Y. Xu, Z. Zhang, M. Zhou, X. Zhang, Z. Liu, J. Zhou, C. Cao, B. Yu, R. Wang, ChemMedChem 2011, 6, 904.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  (a) X. Cheng, F. Liang, F. Shi, L. Zhang, Q. Liu, Org. Lett. 2009, 11, 93.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCgu7rO&md5=fb4b90454883068fad1808f6cd1e8e7fCAS | 19035841PubMed |
      (b) J. Meng, Y. L. Zhao, C. Q. Ren, Y. Li, Z. Li, Q. Liu, Chem. – Eur. J. 2009, 15, 1830.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  V. Fargeas, M. Baalouch, E. Metay, J. Baffreau, D. Menard, P. Gosselin, J.-P. Berge, C. Barthomeuf, J. Lebreton, Tetrahedron 2004, 60, 10359.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFGltb0%3D&md5=f1aa4e6df04d9b846b15f5013786d051CAS |