Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The Influence of Water and Metal Salt on the Transport and Structural Properties of 1-Octyl-3-methylimidazolium Chloride

Nicolas Goujon A B C , Nolene Byrne A , Tiffany R. Walsh A and Maria Forsyth B
+ Author Affiliations
- Author Affiliations

A Institute for Frontier Materials IFM, Deakin University, Waurn Ponds, Victoria 3216, Australia.

B ARC Centre of Excellence for Electromaterials Science, IFM-Institute for Frontier Materials, Deakin University, Burwood, Victoria 3125, Australia.

C Corresponding author: Email: nicolas.goujon@deakin.edu.au

Australian Journal of Chemistry 68(3) 420-425 https://doi.org/10.1071/CH14240
Submitted: 14 April 2014  Accepted: 31 May 2014   Published: 26 August 2014

Abstract

The addition of diluents to ionic liquids (ILs) has recently been shown to enhance the transport properties of ILs. In the context of electrolyte design, this enhancement allows the realisation of IL-based electrolytes for metal–air batteries and other storage devices. It is likely that diluent addition not only impacts the viscosity of the IL, but also the ion–ion interactions and structure. Here, we investigate the nano-structured 1-methyl-3-octylimidazolium chloride (OMImCl) with varying water concentrations in the presence of two metal salts, zinc chloride and magnesium chloride. We find that the choice of metal salt has a significant impact on the structure and transport properties of the system; this is explained by the water structuring and destructing properties of the metal salt.


References

[1]  M. Armand, J.-M. Tarascon, Nature 2008, 451, 652.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Kntrc%3D&md5=aa925f450d8eac8fb5901aa183463796CAS | 18256660PubMed |

[2]  J. S. Lee, S. Tai Kim, R. Cao, N. S. Choi, M. Liu, K. T. Lee, J. Cho, Adv. Energy Mater. 2011, 1, 34.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivF2lu78%3D&md5=9d551472f63fd842d2acf320841466bbCAS |

[3]  T. Kuboki, T. Okuyama, T. Ohsaki, N. Takami, J. Power Sources 2005, 146, 766.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVShtLjP&md5=9ace49d209f6d7bb0819731af28f27e9CAS |

[4]  M. A. Rahman, X. Wang, C. Wen, J. Electrochem. Soc. 2013, 160, A1759.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslCjsbfN&md5=f99b0b453e5e36aa7f04281529c472c0CAS |

[5]  F. Cheng, J. Chen, Chem. Soc. Rev. 2012, 41, 2172.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivFWlsbw%3D&md5=8d1e92aa1ba05ba0d5824f012c7247b4CAS | 22254234PubMed |

[6]  K. Hayamizu, S. Tsuzuki, S. Seki, J. Phys. Chem. A 2008, 112, 12027.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlWqur7K&md5=a68a44dcf06cf4eb9f3e50e848bace08CAS | 18973321PubMed |

[7]  P. M. Bayley, G. H. Lane, N. M. Rocher, B. R. Clare, A. S. Best, D. R. MacFarlane, M. Forsyth, Phys. Chem. Chem. Phys. 2009, 11, 7202.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpslemu7c%3D&md5=17b5ea1c5be7de5a5b9046ab13558bfbCAS | 19672530PubMed |

[8]  P. M. Bayley, J. Novak, T. Khoo, M. M. Britton, P. C. Howlett, D. R. Macfarlane, M. Forsyth, Aust. J. Chem. 2012, 65, 1542.
         | 1:CAS:528:DC%2BC38XhslSmtrnM&md5=3997003e4e30e7c6967262cb10ce4051CAS |

[9]  B. Wu, Y. Liu, Y. Zhang, H. Wang, Chem. – Eur. J. 2009, 15, 6889.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosV2nsbk%3D&md5=b2b992890fd7ece52a6ff7f24ca5db13CAS | 19492369PubMed |

[10]  H.-C. Chang, J.-C. Jiang, C.-Y. Chang, J.-C. Su, C.-H. Hung, Y.-C. Liou, S. H. Lin, J. Phys. Chem. B 2008, 112, 4351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlOjtL0%3D&md5=1a9a5f343222d9247a2c25968454dd58CAS | 18341320PubMed |

[11]  S. Saha, H.-O. Hamaguchi, J. Phys. Chem. B 2006, 110, 2777.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xnt1Cnsg%3D%3D&md5=a5b8710d9637a2bc710e64e519691fa6CAS | 16471885PubMed |

[12]  M. A. Firestone, J. A. Dzielawa, P. Zapol, L. A. Curtiss, S. Seifert, M. L. Dietz, Langmuir 2002, 18, 7258.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xms1Cnt7g%3D&md5=779686833ec85e054eedd2367b9a7c7eCAS |

[13]  W. Jiang, Y. Wang, G. A. Voth, J. Phys. Chem. B 2007, 111, 4812.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVyisbg%3D&md5=b5df20698d83df276330f83671628aabCAS | 17388424PubMed |

[14]  A. Mele, C. D. Tran, S. H. De Paoli Lacerda, Angew. Chem. 2003, 115, 4500.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  C. J. Bowlas, D. W. Bruce, K. R. Seddon, Chem. Commun. 1996, 1625.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFaqsLk%3D&md5=55edea63e1d957fcb6ca7b0294deb8f2CAS |

[16]  A. Bradley, C. Hardacre, J. Holbrey, S. Johnston, S. McMath, M. Nieuwenhuyzen, Chem. Mater. 2002, 14, 629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjslSltA%3D%3D&md5=18c6129c3bd9a182928df8c5fac24d90CAS |

[17]  A. Downard, M. Earle, C. Hardacre, S. McMath, M. Nieuwenhuyzen, S. Teat, Chem. Mater. 2004, 16, 43.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptlOhur8%3D&md5=4a4bfb7b9217d299052713f50d859851CAS |

[18]  I. Goodchild, L. Collier, S. L. Millar, I. Prokes, C. J. Lord, C. P. Butts, J. Bowers, J. R. Webster, R. K. Heenan, J. Colloid Interface Sci. 2007, 307, 455.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1GhtbY%3D&md5=2f758e8608a60c0597b260facc4daceeCAS | 17222419PubMed |

[19]  M. A. Firestone, P. G. Rickert, S. Seifert, M. L. Dietz, Inorg. Chim. Acta 2004, 357, 3991.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovV2jt78%3D&md5=fc913177489e199b368bf30ad544de5dCAS |

[20]  N. Byrne, D. Menzies, N. Goujon, M. Forsyth, Chem. Commun. 2013, 49, 7729.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1elsL%2FE&md5=6c8bee1f6096a104d68bbdec7bf41b5cCAS |

[21]  H. Weingärtner, K. Müller, H. Hertz, A. Edge, R. Mills, J. Phys. Chem. 1984, 88, 2173.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  A. J. Davenport, M. Forsyth, M. M. Britton, Electrochem. Commun. 2010, 12, 44.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyjs7vP&md5=b2087c2eec444eaae71d4d9f9815a800CAS |

[23]  C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVCmt7Y%3D&md5=a4e1fde0260333c84e4e82d620bda277CAS |

[24]  Gaussian 09 M. Frisch, G. Trucks, H. B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson 2009 (Gaussian Inc.: Wallingford, CT).

[25]  C. Krekeler, J. Schmidt, Y. Y. Zhao, B. Qiao, R. Berger, C. Holm, L. Delle Site, J. Chem. Phys. 2008, 129, 174503.
         | Crossref | GoogleScholarGoogle Scholar | 19045354PubMed |

[26]  S. Feng, G. A. Voth, Fluid Phase Equilib. 2010, 294, 148.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvFOjs7o%3D&md5=0aa99e287d931ff872b3c860fc05ec80CAS |

[27]  C. Hanke, R. Lynden-Bell, J. Phys. Chem. B 2003, 107, 10873.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1Ogtbc%3D&md5=b028e5eafa1a44c9124305f230146935CAS |

[28]  A. Menjoge, J. Dixon, J. F. Brennecke, E. J. Maginn, S. Vasenkov, J. Phys. Chem. B 2009, 113, 6353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlygsL8%3D&md5=8d5a1261750769a3349f176c6895585cCAS | 19361225PubMed |

[29]  C. W. Bock, A. K. Katz, J. P. Glusker, J. Am. Chem. Soc. 1995, 117, 3754.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXks1Gqtb8%3D&md5=7a3607ee1172ba40bbca874a97e152a7CAS |

[30]  A. G. Avent, P. A. Chaloner, M. P. Day, K. R. Seddon, T. Welton, J. Chem. Soc., Dalton Trans. 1994, 3405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisFKgurg%3D&md5=7f38e50601b3f7186fa7089b98d02324CAS |

[31]  D. A. Turton, J. Hunger, A. Stoppa, G. Hefter, A. Thoman, M. Walther, R. Buchner, K. Wynne, J. Am. Chem. Soc. 2009, 131, 11140.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVGjs74%3D&md5=f9cb97ab40aa2ae4216b43d59bdbfe7bCAS | 19594150PubMed |

[32]  C. O. Quicksall, T. G. Spiro, Inorg. Chem. 1966, 5, 2232.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXmtVGhuw%3D%3D&md5=3a37ec70ab919761d15793fe991063f5CAS |

[33]  J. A. Tossell, J. Phys. Chem. 1991, 95, 366.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltVGlsw%3D%3D&md5=33c23a19a0fd31d80f36b4f3ae25aa01CAS |

[34]  J.-J. Max, C. Chapados, J. Chem. Phys. 2001, 115, 2664.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls1yjsr0%3D&md5=38bc8c691c42b0f6d21ae265d694bb02CAS |

[35]  J.-J. Max, V. Gessinger, C. van Driessche, P. Larouche, C. Chapados, J. Chem. Phys. 2007, 126, 184507.
         | Crossref | GoogleScholarGoogle Scholar | 17508811PubMed |