Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Construction of a New ZnII Coordination Polymer for Selective Fluorescence Sensing of CCl4

Jiang-Tao Li A , Yan-Li Dong B and Jing Li A C
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Chemical engineering, The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, Xi’an University, Xi’an, China.

B College of Sciences, Agricultural University of Hebei, Baoding, China.

C Corresponding author. Email: lijing3157@aliyun.com

Australian Journal of Chemistry 69(1) 56-60 https://doi.org/10.1071/CH15185
Submitted: 14 April 2015  Accepted: 10 June 2015   Published: 28 July 2015

Abstract

Solvothermal reactions of Zn(NO3)2·6H2O, H3tci, and biimpy generated a new ZnII coordination polymer namely [Zn3(tci)2(biimpy)]n·2n(DMF) (1 H3tci = tri(2-carboxyethyl)isocyanurate, biimpy = 2,6-bis(1-imdazoly)pyridine, DMF = N,N-dimethylformamide). Single-Crystal X-ray diffraction analysis reveals that compound 1 features a 2-fold interpenetrated 3D pillar-layered framework based on trinuclear [Zn3(COO)6] cluster subunits. Topological analysis reveals that compound 1 represents a 2-fold interpenetrated (3,8)-connected tfz-d topological network with the point symbol of {43}2{46.618.84}. The luminescence properties of compound 1 dispersed in different organic solvents were systematically investigated. The results indicated that compound 1 can be used as a candidate for selective sensing of CCl4 via a luminescence quenching mechanism.


References

[1]  M. Du, C. P. Li, C. S. Liu, S. M. Fang, Coord. Chem. Rev. 2013, 257, 1282.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjt1aiurg%3D&md5=024f106fd1b77dcc501a039401c31accCAS |

[2]  C. T. He, J. Y. Tian, S. Y. Liu, G. F. Ouyang, J. P. Zhang, X. M. Chen, Chem. Sci. 2013, 4, 351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKkurrJ&md5=cffaba4dc9c980f8fc457414c49d0955CAS |

[3]  M. Du, C. P. Li, M. Chen, Z. W. Ge, X. Wang, L. Wang, C. S. Liu, J. Am. Chem. Soc. 2014, 136, 10906.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFCrtL7N&md5=7ef81d01caafc6c75f28c12a9150c669CAS | 25019403PubMed |

[4]  D. Zhao, D. J. Timmons, D. Yuan, H. C. Zhou, Acc. Chem. Res. 2011, 44, 123.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsV2ksbfO&md5=bd70c38400dcfaf1b89aa58170599043CAS | 21126015PubMed |

[5]  M. P. Suh, H. J. Park, T. K. Prased, D. W. Lim, Chem. Rev. 2012, 112, 782.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1GlsbjM&md5=4fd8de8e1a884a33f068d3690d203250CAS | 22191516PubMed |

[6]  Z. Hu, B. J. Deibert, J. Li, Chem. Soc. Rev. 2014, 43, 5815.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Slu7nL&md5=426a38aa94eeac20a62afe9c4f282af9CAS | 24577142PubMed |

[7]  M. Du, M. Chen, X. G. Yang, J. Wen, X. Wang, S. M. Fang, C. S. Liu, J. Mater. Chem. A 2014, 2, 9828.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVWrur3E&md5=2a5e59113b46a207c77f29fb2bd544ccCAS |

[8]  Y. Xia, K. L. Cao, M. M. Han, Y. L. Feng, Inorg. Chem. Commun. 2015, 56, 76.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlslelsb4%3D&md5=16d0f7880815ac7a1f052c74d6c5c076CAS |

[9]  Z. F. Wu, B. Tan, M. L. Feng, C. F. Du, X. Y. Huang, J. Solid State Chem. 2015, 223, 59.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFSht7vL&md5=ca0c123352bae3ce540986daa2d554d1CAS |

[10]  R. B. Fu, S. M. Hu, X. T. Wu, CrystEngComm 2012, 14, 5761.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtF2rt7%2FF&md5=fcdefebb592a8f05a98dc048c2bc9b1fCAS |

[11]  Q. X. Yang, X. Q. Chen, Z. J. Chen, Y. Hao, Y. Z. Li, Q. Y. Lu, H. G. Zheng, Chem. Commun. 2012, 48, 10016.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlCjsrfN&md5=07e831493799babcc8ad798dd697fb6dCAS |

[12]  J. C. Jin, Y. N. Zhang, Y. Y. Wang, J. Q. Liu, Z. Dong, Q. Z. Shi, Chem. – Asian J. 2010, 5, 1611.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosVynt74%3D&md5=014e0f4eead2871b138a420a9339bd7bCAS | 20533433PubMed |

[13]  Y. X. Tan, Y. P. He, Y. Zhang, Y. J. Zheng, J. Zhang, CrystEngComm 2013, 15, 6009.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2ktLfE&md5=8f10b5109f850ef71122e17f05e2b051CAS |

[14]  Y. B. Zhang, H. L. Zhou, R. B. Lin, C. Zhang, J. B. Lin, J. P. Zhang, X. M. Chen, Nat. Commun. 2012, 3, 642.
         | Crossref | GoogleScholarGoogle Scholar | 22273680PubMed |

[15]  X. Zhang, Y. Y. Huang, J. K. Cheng, Y. G. Yao, J. Zhang, F. Wang, CrystEngComm 2012, 14, 4843.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovVynt78%3D&md5=fa97221a96a88d47b27bbf8932946c94CAS |

[16]  Z. Q. Jiang, G. Y. Jiang, F. Wang, Z. Zhao, J. Zhang, Chem. Commun. 2012, 48, 3653.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvFKksbY%3D&md5=3ddef2fdee78bc82809e6b8909173f2cCAS |

[17]  D. L. Yang, X. Zhang, Y. G. Yao, J. Zhang, CrystEngComm 2014, 16, 8047.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFWhs7zN&md5=a6bf4713662cee18b0153bafd0f3d129CAS |

[18]  Z. J. Lin, B. Xu, T. F. Liu, M. N. Cao, J. Lu, R. Cao, Eur. J. Inorg. Chem. 2010, 2010, 3842.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  Z. B. Han, G. X. Zhang, M. H. Zeng, C. H. Ge, X. H. Zou, G. X. Han, CrystEngComm 2009, 11, 2629.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVeitbjP&md5=e6c5c63e3c15e26f3252d50b9cf450beCAS |

[20]  M. Y. Zhang, W. J. Shan, Z. B. Han, CrystEngComm 2012, 14, 1568.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVGjt7k%3D&md5=6ef150973becbb8aa0b262293a0232acCAS |

[21]  Q. L. Zhu, C. J. Shen, C. H. Tan, T. L. Sheng, S. M. Hu, X. T. Wu, Dalton Trans. 2012, 41, 9604.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVynsLvI&md5=e4cda5fa91d6fcc927b234c6296be69bCAS |

[22]  H. J. Li, H. C. Yao, E. P. Zhang, Y. Y. Jia, H. W. Hou, Y. T. Fan, Dalton Trans. 2011, 40, 9388.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFektL3O&md5=394973f44c8e081cf3cc6f706b663098CAS |

[23]  P. P. Cui, J. L. Wu, X. L. Zhao, D. Sun, L. L. Zhang, J. Guo, D. F. Sun, Cryst. Growth Des. 2011, 11, 5182.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOks7fI&md5=651ba7d58daf86cc56c8f06a892bb837CAS |

[24]  S. K. Ghosh, J. P. Zhang, S. Kitagawa, Angew. Chem., Int. Ed. 2007, 46, 7965.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Kit7fN&md5=8b63956db4acc97f007517097398e1ddCAS |

[25]  A. L. Spek, PLATON, A Multipurpose Crystallographic Tool 2001 (Utrecht University: Utrecht, The Netherlands).

[26]  A. Lan, K. Li, H. Wu, D. H. Olson, T. J. Emge, W. Ki, M. Hong, J. Li, Angew. Chem., Int. Ed. 2009, 48, 2334.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkt1yqtb8%3D&md5=c1e38077e698731608b34628f38cf670CAS |

[27]  J. Xu, Z. S. Bai, M. S. Chen, Z. Su, S. S. Chen, W. Y. Sun, CrystEngComm 2009, 11, 2728.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVeitbnK&md5=f07ff0beab7a855390bbb461a002e4baCAS |

[28]  C. P. Li, J. M. Wu, M. Du, Chem. –Eur. J. 2012, 18, 12437.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Kiur7I&md5=3fad99e28048bfc43a91b639f57c4be2CAS | 22930554PubMed |

[29]  H. Gao, X. H. Lou, W. J. Du, Q. T. Li, C. Xu, Inorg. Chim. Acta 2014, 412, 46.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisVGjsbs%3D&md5=3962c9a771c9ceeee1dd8b1c988aa777CAS |

[30]  SAINT Software Reference Manual 1998 (Bruker AXS: Madison, WI).

[31]  G. M. Sheldrick, SHELXTL NT, version 5.1; Program for Solution and Refinement of Crystal Structures 1997 (University of Göttingen: Göttingen, Germany).