Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthetic, Spectroscopic, Crystallographic, and Biological Studies of Seven-Coordinated Diorganotin(iv) Complexes Derived from Schiff Bases and Pyridinic Carboxylic Acids

Guillermo M. Chans A , Antonio Nieto-Camacho A , Teresa Ramírez-Apan A , Simón Hernández-Ortega A , Cecilio Álvarez-Toledano A and Elizabeth Gómez A B
+ Author Affiliations
- Author Affiliations

A Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, 04510 México D. F., México.

B Corresponding author. Email: eligom@unam.mx

Australian Journal of Chemistry 69(3) 279-290 https://doi.org/10.1071/CH15344
Submitted: 12 June 2015  Accepted: 22 July 2015   Published: 1 September 2015

Abstract

The synthesis and characterisation of diorganotin(iv) monomeric derivatives of pyridine Schiff bases and pyridinic carboxylic acids are reported. All complexes were characterised by mass spectrometry, elemental analyses, IR spectra, and multinuclear NMR analyses. Among them, complexes 5a, 5d, 5e, 5g, and 6a were also confirmed by X-ray crystallography diffraction analyses, which led to establishing that the tin atom is seven-coordinated and has a distorted pentagonal–bipyramidal coordination environment in the solid state and also revealed that both ligands occupy the equatorial positions and the organic substituents the axial positions. The antioxidant activity of the synthetic derivatives towards 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) as well as the thiobarbituric acid reactive substances (TBARS) assay were determined, and were compared with standard antioxidants, showing a dose-dependent activity in both cases. A prominent response was obtained depending on the substituent. The anti-inflammatory activity was also evaluated on a 12-O-tetradecanoylphorbol-13-acetate (TPA) model of induced acute inflammation. The results of the biological tests are discussed in terms of structural characteristics.


References

[1]  M. Gielen, E. R. T. Tiekink, Metallotherapeutic Drugs and Metal-Based Diagnostic Agents. The Use of Metals in Medicine 2005 (John Wiley & Sons, Ltd: West Sussex).

[2]  J. C. Dabrowiak, Metals in Medicine 2009 (John Wiley & Sons: New York, NY).

[3]  I. Haiduc, C. Silvestru, Coord. Chem. Rev. 1990, 99, 253.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXktVSjs7k%3D&md5=a67a9eca462fe2bdb64543a1e9006950CAS |

[4]  C. F. J. Barnard, Platin. Met. Rev. 1989, 33, 162.
         | 1:CAS:528:DyaK3cXkvVWhsA%3D%3D&md5=4872e5b4be2564e7969d040d53b8f354CAS |

[5]  P. Yang, M. Guo, Coord. Chem. Rev. 1999, 185–186, 189.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  A. Ioannidou, A. Czapik, P. Gkizis, M. Perviaz, D. Tzimopoulos, M. Gdaniec, P. D. Akrivos, Aust. J. Chem. 2013, 66, 600.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsl2ms7g%3D&md5=1c8512dfaf08ec79434e56e259595149CAS |

[7]  M. Carcelli, G. Corazzari, S. Ianelli, G. Pelizzi, C. Solinas, Inorg. Chim. Acta 2003, 353, 310.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnt1altbk%3D&md5=26cf2fe2585097758fc4bb4ea4bd8de3CAS |

[8]  M. Nardelli, C. Pelizzi, G. Pelizzi, P. Tarasconi, J. Chem. Soc., Dalton Trans. 1985, 321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXkslWnsb0%3D&md5=99b80dc37df146756b6f4f05f479a5c6CAS |

[9]  A. Cortés-Lozada, E. Gómez, S. Hernández, Synth. React. Inorg. Nano-Met. Chem. 2012, 42, 1143.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  M. Gielen, H. Dalil, L. Ghys, B. Boduszek, E. R. T. Tiekink, J. C. Martins, M. Biesemans, R. Willem, Organometallics 1998, 17, 4259.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslOnu7g%3D&md5=e5d287554fd842a65f3260d853d8c9feCAS |

[11]  G. F. de Sousa, J. Valdés-Martínez, S. Hernández-Ortega, Acta Crystallogr. Sect. E: Struct. Rep. Online 2005, 61, m1810.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps1OktLg%3D&md5=5035522ac19039e28563eb9527e74da6CAS |

[12]  M. Ranjar, H. Aghabozorg, A. Moghimi, Anal. Sci.: X-Ray Struct. Anal. Online 2003, 19, x71.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  A. González, E. Gómez, A. Cortés-Lozada, S. Hernández, T. Ramírez-Apan, A. Nieto-Camacho, Chem. Pharm. Bull. 2009, 57, 5.
         | Crossref | GoogleScholarGoogle Scholar | 19122310PubMed |

[14]  J. Silver, C. S. Frampton, G. R. Fern, D. A. Davies, J. R. Miller, J. L. Sosa-Sanchez, Inorg. Chem. 2001, 40, 5434.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1anu7Y%3D&md5=d9b7b6b12e06f6b85e468810ad307dc6CAS | 11578191PubMed |

[15]  J. S. Casas, E. E. Castellano, J. Ellena, M. S. García-Tasende, A. Sánchez, J. Sordo, M. J. Vidarte, Inorg. Chim. Acta 2004, 357, 2324.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVGhsrc%3D&md5=5930b85bad7568caaf05ba38578939b7CAS |

[16]  G. F. de Sousa, M. B. P. Mangas, R. H. P. Francisco, M. T. P. Gambardella, A. M. G. D. Rodrigues, A. Abras, J. Braz. Chem. Soc. 1999, 10, 222.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXls12hs70%3D&md5=d69a729b32b6d7ab1f27ed4fbb849b57CAS |

[17]  G. F. de Sousa, V. M. Deflon, E. Niquet, A. Abras, J. Braz. Chem. Soc. 2001, 12, 493.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslKmtLc%3D&md5=a941e52a44fa28c455ecb3a8d1091704CAS |

[18]  G. F. de Sousa, J. Valdés-Martínez, G. E. Pérez, A. Toscano, A. Abras, C. A. L. Filgueiras, J. Braz. Chem. Soc. 2002, 13, 559.
         | 1:CAS:528:DC%2BD38XptlaqtLk%3D&md5=ea9c9e94047111a87d0f097b4c104c2cCAS |

[19]  C. Pelizzi, G. Pelizzi, J. Chem. Soc., Dalton Trans. 1980, 1970.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXjtVymtQ%3D%3D&md5=6ae1aaaccf321ea75fb675f6e4e3e175CAS |

[20]  G. F. de Sousa, D. X. West, C. A. Brown, J. K. Swearingen, J. Valdés-Martínez, R. A. Toscano, S. Hernández-Ortega, M. Höherner, A. J. Bortoluzzi, Polyhedron 2000, 19, 841.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFegu78%3D&md5=320794d84b510e8d5cd964aac94ee695CAS |

[21]  M. A. Ali, A. H. Mirza, A. L. Tan, L. K. Wei, P. V. Bernhardt, Polyhedron 2004, 23, 2037.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlyrtLc%3D&md5=3b387a7b65437259945f835e4046f7ceCAS |

[22]  A. T. de Sousa, K. E. Bessler, S. S. Lemos, J. Ellena, C. C. Gatto, Z. Anorg. Allg. Chem. 2009, 635, 106.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVert7Y%3D&md5=b9aacdd1b68f1b4d87dbdbc2b7d9fcc4CAS |

[23]  T. S. Basu Baul, C. Masharing, R. Willem, M. Biesemans, M. Holčapek, R. Jirásko, A. Linden, J. Organomet. Chem. 2005, 690, 3080.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltFWrsL8%3D&md5=e3ee7122d2e752f1b6c43068c093543dCAS |

[24]  S. Shuja, S. Ali, M. N. Tahir, N. Khalid, I. U. Khan, Acta Crystallogr. Sect. E: Struct. Rep. Online 2008, 64, m531.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1egu7o%3D&md5=869e934de3f783f8fe5ebaa684e2c65dCAS |

[25]  A. Ramírez-Jiménez, E. Gómez, S. Hernández, J. Organomet. Chem. 2009, 694, 2965.
         | Crossref | GoogleScholarGoogle Scholar |

[26]  E. López-Torres, F. Zani, M. A. Mendiola, J. Inorg. Biochem. 2011, 105, 600.
         | Crossref | GoogleScholarGoogle Scholar | 21443849PubMed |

[27]  E. Labisbal, L. Rodríguez, A. Sousa-Pedrares, M. Alonso, A. Vizoso, J. Romero, J. A. García-Vázquez, A. Sousa, J. Organomet. Chem. 2006, 691, 1321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVOhs7g%3D&md5=7ca029c1f63a5a263d9e7160a0773cc4CAS |

[28]  V. Barba, E. Vega, R. Luna, H. Höpfl, H. I. Beltrán, L. S. Zamudio-Rivera, J. Organomet. Chem. 2007, 692, 731.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFKmuw%3D%3D&md5=7de1e98f659b7a10580f75992bcfa402CAS |

[29]  A. K. Saxena, J. K. Koacher, J. P. Tandon, S. R. Das, J. Toxicol. Environ. Health 1982, 10, 709.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXht1alsbo%3D&md5=441ccd3bba962b9ed29774df6949f9a4CAS | 6298434PubMed |

[30]  K. Singh Ajai, S. Bhandari, Main Group Met. Chem. 2003, 26, 155.
         | Crossref | GoogleScholarGoogle Scholar |

[31]  A. Orita, A. Mitsutome, J. Otera, J. Org. Chem. 1998, 63, 2420.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXit12mu7Y%3D&md5=2e7981fd9697d7ccf2f9ba82fe218a0bCAS | 11672094PubMed |

[32]  Y. Hori, T. Hagiwara, Int. J. Biol. Macromol. 1999, 25, 237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksV2qt7g%3D&md5=9fc258218fa6086ae3291411b8e2a6e3CAS | 10416671PubMed |

[33]  A. Orita, K. Sakamoto, Y. Hamada, A. Mitsutome, J. Otera, Tetrahedron 1999, 55, 2899.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhslKmt7Y%3D&md5=406063412f641f148d5b5b6cd3422ba9CAS |

[34]  J. Otera, Chem. Rev. 1993, 93, 1449.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXktVyisb8%3D&md5=8174aea18fad608d7378c47c182bb9f7CAS |

[35]  S. Durand, K. Sakamoto, T. Fukuyama, A. Orita, J. Otera, A. Duthie, D. Dakternieks, M. Schulte, K. Jurkschat, Organometallics 2000, 19, 3220.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksleis7w%3D&md5=27cf024ab9b3c59cced48e2763f460b8CAS |

[36]  A. Orita, Y. Hamada, T. Nakano, S. Toyoshima, J. Otera, Chem. – Eur. J. 2001, 7, 3321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVCksLs%3D&md5=69d1fa1912264bb374cbc403c8ccdcabCAS | 11531118PubMed |

[37]  R. Hutton, E. V. Oakes, J. Burley, U.S. Patent 4080362 1978.

[38]  K. Kuželová, Z. Vymazal, Eur. Polym. J. 1999, 35, 361.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  L. Jiráčková-Audouin, J. Verdu, Eur. Polym. J. 1985, 21, 421.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  I. Omae, in Antifouling Paint Biocides (Ed. I. Konstantinou) 2006, Vol. 50, pp. 17–50 (Springer: Berlin).

[41]  A. Casini, L. Messori, P. Orioli, M. Gielen, M. Kemmer, R. Willem, J. Inorg. Biochem. 2001, 85, 297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls1aqsbs%3D&md5=da8f61e07e9b56e778634b9ceba73f4eCAS | 11551387PubMed |

[42]  M. Gielen, K. Handlir, M. Holein, D. de Vos, Met. Based Drugs 2000, 7, 233.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFCksbk%3D&md5=8f6d7742a3efebfc6358d509bd52285eCAS | 18475950PubMed |

[43]  M. Gielen, M. Biesemans, D. de Vos, R. Willem, J. Inorg. Biochem. 2000, 79, 139.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjslyrs7o%3D&md5=e09db3bd249c2c7be39bac87d7465102CAS | 10830858PubMed |

[44]  S. Shahzadi, S. Ali, M. H. Bhatti, M. Fettouhi, M. Athar, J. Organomet. Chem. 2006, 691, 1797.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislCns7k%3D&md5=1cd165945a94c6a30f9946b60bb79a45CAS |

[45]  S. Gaur, S. Maanju, N. Fahmi, R. V. Singh, Main Group Met. Chem. 2005, 28, 293.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFWltrw%3D&md5=c21568c4705d2744face10f9e2b36a7bCAS |

[46]  M. A. Girasolo, D. Schillaci, C. Di Salvo, G. Barone, A. Silvestri, G. Ruisi, J. Organomet. Chem. 2006, 691, 693.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotF2msQ%3D%3D&md5=4225577ee9d875b5551d968f3a0de2bdCAS |

[47]  T. S. Basu Baul, Appl. Organomet. Chem. 2008, 22, 195.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  W. Rehman, M. K. Baloch, A. Badshah, J. Braz. Chem. Soc. 2005, 16, 827.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXosValsb4%3D&md5=c805170982c2f28e58a45805d215bff5CAS |

[49]  M. Nath, S. Pokharia, G. Eng, X. Song, A. Kumar, Eur. J. Med. Chem. 2005, 40, 289.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs12itLk%3D&md5=b9ed6b928874c4c43c6634e2d5d6d2a1CAS | 15725498PubMed |

[50]  M. Nath, S. Pokharia, G. Eng, X. Song, A. Kumar, Spectrochim. Acta A 2006, 63, 66.
         | Crossref | GoogleScholarGoogle Scholar |

[51]  M. Nath, R. Yadav, G. Eng, T.-T. Nguyen, A. Kumar, J. Organomet. Chem. 1999, 577, 1.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivVWntrw%3D&md5=62bba6d9fd57bcdf6614b8c7374dce3fCAS |

[52]  M. Nath, S. Pokharia, G. Eng, X. Song, A. Kumar, J. Organomet. Chem. 2003, 669, 109.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1aitbk%3D&md5=46f33b7d02e1158ecc0e909a2f7ad46dCAS |

[53]  M. I. Khan, M. Kaleem Baloch, M. Ashfaq, J. Organomet. Chem. 2004, 689, 3370.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFaisbc%3D&md5=c6208114db3bd4317fa0892faa4fdc98CAS |

[54]  D. Kovala-Demertzi, J. Organomet. Chem. 2006, 691, 1767.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XislCns70%3D&md5=ffa99f86bb2b321ab62cf376e5db1446CAS |

[55]  M. Nath, R. Jairath, G. Eng, X. Song, A. Kumar, Inorg. Chem. Commun. 2004, 7, 1161.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFSgs78%3D&md5=bf5e290b295415d50e9b4fe9f7343bc9CAS |

[56]  M. Nath, R. Jairath, G. Eng, X. Song, A. Kumar, Spectrochim. Acta A 2005, 62, 1179.
         | Crossref | GoogleScholarGoogle Scholar |

[57]  V. Dokorou, D. Kovala-Demertzi, J. P. Jasinski, A. Galani, M. A. Demertzis, Helv. Chim. Acta 2004, 87, 1940.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1Kmsrs%3D&md5=cc4b62cf6558bac0487dcf8fc55b2e0cCAS |

[58]  D. Kovala-Demertzi, V. Dokorou, Z. Ciunik, N. Kourkoumelis, M. A. Demertzis, Appl. Organomet. Chem. 2002, 16, 360.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVyks7Y%3D&md5=ff60fb7486b9b8c671b62a4cdd917db4CAS |

[59]  A. Chaudhary, M. Agarwal, R. V. Singh, Appl. Organomet. Chem. 2006, 20, 295.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1yqtLw%3D&md5=e6e13b11e3ee6dbd775aec1b3bdb524dCAS |

[60]  M. Shavit, E. Y. Tshuva, Eur. J. Inorg. Chem. 2008, 2008, 1467.
         | Crossref | GoogleScholarGoogle Scholar |

[61]  L. Dubois, J. Pécaut, M.-F. Charlot, C. Baffert, M.-N. Collomb, A. Deronzier, J.-M. Latour, Chem. – Eur. J. 2008, 14, 3013.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVartbo%3D&md5=1cb3e8d5cec31be52126a78bc3c66c95CAS | 18293345PubMed |

[62]  M. Zhao, B. Helms, E. Slonkina, S. Friedle, D. Lee, J. DuBois, B. Hedman, K. O. Hodgson, J. M. J. Fréchet, S. J. Lippard, J. Am. Chem. Soc. 2008, 130, 4352.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtFSktLo%3D&md5=6abbb647a4baec93958f5b0e73fd6db2CAS | 18331028PubMed |

[63]  C.-I. Yang, W. Wernsdorfer, Y.-J. Tsai, G. Chung, T.-S. Kuo, G.-H. Lee, M. Shieh, H.-L. Tsai, Inorg. Chem. 2008, 47, 1925.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yisb8%3D&md5=ffdea93e865293a757e9a855b4f9e756CAS | 18290611PubMed |

[64]  M. Vasconcellos-Dias, C. D. Nunes, P. D. Vaz, P. Ferreira, M. J. Calhorda, Eur. J. Inorg. Chem. 2007, 2007, 2917.
         | Crossref | GoogleScholarGoogle Scholar |

[65]  L. Matei, C. Bleotu, I. Baciu, C. C. Diaconu, A. Hanganu, O. Banu, P. Ionita, A. Paun, A. Tatibouët, I. Zarafu, Bioorg. Med. Chem. 2015, 23, 401.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltVClug%3D%3D&md5=0e34e9b9b1952b25550f8eaa16fbc3b2CAS | 25557899PubMed |

[66]  L. Matei, C. Bleotu, I. Baciu, C. Draghici, P. Ionita, A. Paun, M. C. Chifiriuc, A. Sbarcea, I. Zarafu, Bioorg. Med. Chem. 2013, 21, 5355.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVCgsbzP&md5=b121895e4dc061666ebfc10e637f63aaCAS | 23823011PubMed |

[67]  S. Ellis, D. S. Kalinowski, L. Leotta, M. L. H. Huang, P. Jelfs, V. Sintchenko, D. R. Richardson, J. A. Triccas, Mol. Pharmacol. 2014, 85, 269.
         | Crossref | GoogleScholarGoogle Scholar | 24243647PubMed |

[68]  S.-G. Teoh, G.-Y. Yeap, C.-C. Loh, L.-W. Foong, S.-B. Teo, H.-K. Fun, Polyhedron 1997, 16, 2213.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtl2nurg%3D&md5=393b78171e1f5b9ab1d7b9b3a2a0df98CAS |

[69]  C. Pettinari, F. Marchetti, R. Pettinari, D. Martini, A. Drozdov, S. Troyanov, J. Chem. Soc., Dalton Trans. 2001, 1790.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjslyiurg%3D&md5=d4e48ab55782d1f80b24bb00e3887be3CAS |

[70]  C. Ma, Y. Han, R. Zhang, D. Wang, Dalton Trans. 2004, 1832.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1Ciu7Y%3D&md5=bdcd1d35aa0fdafe8cf3361ad5851f03CAS | 15381988PubMed |

[71]  R. Zhang, G. Tian, C. Ma, J. Organomet. Chem. 2005, 690, 4049.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1aju7k%3D&md5=26da1b6732edc57eca6b32a5bf4d82afCAS |

[72]  T. S. Basu Baul, S. Dhar, E. Rivarola, F. E. Smith, R. Butcher, X. Song, M. McCain, G. Eng, Appl. Organomet. Chem. 2003, 17, 261.
         | Crossref | GoogleScholarGoogle Scholar |

[73]  S. W. Ng, J. Organomet. Chem. 1999, 585, 12.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVCht7k%3D&md5=3d922a16f85a9ebe2833d0ef282736aeCAS |

[74]  A. Ramírez-Jiménez, R. Luna-García, A. Cortés-Lozada, S. Hernández, T. Ramírez-Apan, A. Nieto-Camacho, E. Gómez, J. Organomet. Chem. 2013, 738, 10.
         | Crossref | GoogleScholarGoogle Scholar |

[75]  T. Kulisic, A. Radonic, V. Katalinic, M. Milos, Food Chem. 2004, 85, 633.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFCmtA%3D%3D&md5=cc24c66521a0782ebaef29f8d5c57555CAS |

[76]  P. Molyneux, Songklanakarin J. Sci. Technol. 2004, 26, 211.
         | 1:CAS:528:DC%2BD2MXltFajt7o%3D&md5=e35f36c7777c5ce575badbf348679469CAS |

[77]  I. I. Koleva, T. A. van Beek, J. P. H. Linssen, A. d. Groot, L. N. Evstatieva, Phytochem. Anal. 2002, 13, 8.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtV2nt7c%3D&md5=182d314cc21753cc9c5b82228a4da539CAS | 11899609PubMed |

[78]  D. Huang, B. Ou, R. L. Prior, J. Agric. Food Chem. 2005, 53, 1841.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslaltLo%3D&md5=fed2efec1585fa720f33a32cea5e874aCAS | 15769103PubMed |

[79]  K. C. Nicolaou, R. Scarpelli, B. Bollbuck, B. Werschkun, M. M. A. Pereira, M. Wartmann, K. H. Altmann, D. Zaharevitz, R. Gussio, P. Giannakakou, Chem. Biol. 2000, 7, 593.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1Wntr4%3D&md5=ab7c62cce41d2ba3c5b8307c920f78deCAS | 11048950PubMed |

[80]  G. M. Sheldrick, SHELXS-2014 and SHELXL-2014 2014 (University of Gottingen: Gottingen).

[81]  M. Cuendet, K. Hostettmann, O. Potterat, W. Dyatmiko, Helv. Chim. Acta 1997, 80, 1144.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXks1Wgsrk%3D&md5=c3cf49b108eee9ad7ab5f70f40f3cdfeCAS |

[82]  W. Bors, M. Saran, E. F. Elstner, in Modern Methods of Plant Analysis - Plant Toxin Analysis (Eds H. F. Linskens, J. F. Jackson) 1992, Vol. 13, pp. 277–295 (Springer: Berlin).

[83]  J. I. Rossato, L. A. Ketzer, F. B. Centurião, S. J. N. Silva, D. S. Lüdtke, G. Zeni, A. L. Braga, M. A. Rubin, J. B. T. Rocha, Neurochem. Res. 2002, 27, 297.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjsFGj&md5=eb817ce3a38f7179844f6706c526230aCAS | 11958531PubMed |

[84]  O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall, J. Biol. Chem. 1951, 193, 265.
         | 1:CAS:528:DyaG38XhsVyrsw%3D%3D&md5=53fabffc63583c5efe54b8b534d8b275CAS | 14907713PubMed |

[85]  H. Ohkawa, N. Ohishi, K. Yagi, Anal. Biochem. 1979, 95, 351.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXksFaisbk%3D&md5=e9bc13fd68b50ef383b7d18e46ea6966CAS |

[86]  H. Esterbauer, K. H. Cheeseman, Methods Enzymol. 1990, 186, 407.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXks1Olt7w%3D&md5=feaee614bf759f9a99466f983ef554a6CAS | 2233308PubMed |

[87]  L. M. De Young, J. B. Kheifets, S. J. Ballaron, J. M. Young, Agents Actions 1989, 26, 335.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsVOnsbg%3D&md5=3ff8508d0c6307e23a7547c9dbf4ebf6CAS | 2567568PubMed |