Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Synthesis and Properties of Photoswitchable Carbohydrate Fluorosurfactants

Yingxue Hu A D , Joshua B. Marlow A D , Rajesh Ramanathan B , Wenyue Zou B , Hui Geok Tiew C , Matthew J. Pottage A , Vipul Bansal B , Rico F. Tabor A and Brendan L. Wilkinson A E
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, PO Box 23, Clayton, Vic. 3800, Australia.

B Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Applied Sciences, RMIT University, PO Box 2476, Melbourne, Vic. 3001, Australia.

C School of Chemical and Life Sciences, Nanyang Polytechnic, 180 Ang Mo Kio Avenue 8, Singapore 569830.

D These authors contributed equally to this work.

E Corresponding author. Email: brendan.wilkinson@monash.edu

Australian Journal of Chemistry 68(12) 1880-1884 https://doi.org/10.1071/CH15434
Submitted: 18 July 2015  Accepted: 29 July 2015   Published: 17 August 2015

Abstract

We describe the parallel synthesis, photocontrollable surface tension, and antibacterial performance of a new class of carbohydrate fluorosurfactant. Novel fluorosurfactants comprised a mono- or disaccharide head group linked to an azobenzene unit that was variably substituted with a trifluoromethyl group. Fluorosurfactants were rapidly assembled using the venerable CuI-catalysed azide–alkyne cycloaddition reaction and exhibited light-addressable surface activity, excellent water solubility, and selective antibacterial activity against Gram-positive Staphylococcus aureus. Notably, the physicochemical and biological activity of these novel materials was heavily dependent on the nature of the head group and the position of the trifluoromethyl substituent on the azobenzene ring. The UV-adapted cis-isomer of fluorosurfactants displayed good thermal stability at ambient temperature, with little reversion to the stable trans isomer after 16 h. These novel, light-responsive materials should find broad interest in a range of biomedical and technological fields, including drug and gene delivery, self-cleaning oleophobic surfaces, and antibacterial coatings for medical devices.


References

[1]  M. P. Krafft, J. G. Riess, Chem. Rev. 2009, 109, 1714.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtlensbk%3D&md5=6680f9213498f9b752a2534347482845CAS | 19296687PubMed |

[2]  N. M. Kovalchuk, A. Trybala, V. Stavrov, O. Matar, N. Ivanova, Adv. Colloid Interface Sci. 2014, 210, 65.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXns1WqtLc%3D&md5=37ada6fc78afed3cc01ae323555197ddCAS | 24814169PubMed |

[3]  M. P. Krafft, J. G. Riess, Biochimie 1998, 80, 489.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmt1Snurw%3D&md5=45fe59349ea0842825e4e897583542d2CAS | 9782389PubMed |

[4]  (a) M. P. Krafft, Adv. Drug Delivery Rev. 2001, 47, 209.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXislGls7Y%3D&md5=65ad8c8cbbabf006edee53bf45986a96CAS |
      (b) J. G. Riess, M. P. Krafft, Biomaterials 1998, 19, 1529.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  Y.-L. Chiu, H. F. Chan, K. K. L. Phua, Y. Zhang, S. Juul, B. R. Knudsen, Y.-P. Ho, K. W. Leong, ACS Nano 2014, 8, 3913.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks1SisLs%3D&md5=5d58aa331937af2da41eac8dd015d473CAS | 24646088PubMed |

[6]  J. A. Howarter, K. L. Genson, J. P. Youngblood, ACS Appl. Mater. Interfaces 2011, 3, 2022.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvFClsbk%3D&md5=c2c26bfb5553e5ec1c0b7a640fd569fdCAS | 21526842PubMed |

[7]  R. M. Buck, P. M. Murphy, M. Pabon, in Perfluorinated Compounds and Transformation Products (Eds T. P. Knepper, F. T. Lange) 2012, pp. 1–24 (Springer Verlag: Berlin).

[8]  F. J. Lim, K. Ananthanarayanan, J. Luther, G. W. Ho, J. Mater. Chem. 2012, 22, 25057.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12lsLrO&md5=5809ea242914452fdb107cfb4df4b85cCAS |

[9]  J. G. Riess, J. Greiner, Carbohydr. Res. 2000, 327, 147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVGrur4%3D&md5=8421f12e10f0ac3005eb24d1d8902c29CAS | 10968680PubMed |

[10]  P. Brown, C. P. Butts, J. Eastoe, Soft Matter 2013, 9, 2365.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1altbY%3D&md5=ebba1c66ec3dd1528d2729427e2f9cebCAS |

[11]  Y. Hu, R. F. Tabor, B. L. Wilkinson, Org. Biomol. Chem. 2015, 13, 2216.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFKksrvM&md5=3c51a87e65246dbc49ecfeb83bc34eadCAS | 25573270PubMed |

[12]  (a) D. Bléger, J. Swarz, A. M. Brouwer, S. Hecht, J. Am. Chem. Soc. 2012, 134, 20597.
         | Crossref | GoogleScholarGoogle Scholar | 23236950PubMed |
      (b) S. Samanta, T. M. McCormick, S. K. Schmidt, D. S. Seferos, G. A. Woolley, Chem. Commun. 2013, 10314.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) A. A. Beharry, G. A. Woolley, Chem. Soc. Rev. 2011, 40, 4422.
         | Crossref | GoogleScholarGoogle Scholar |

[13]  S. Shinkai, K. Matsuo, A. Harada, O. Manabe, J. Chem. Soc., Perkin Trans. 2 1982, 1261.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXhs1Sksg%3D%3D&md5=bbcaf6d088a38d8e1fd5df4fda5c07ecCAS |

[14]  R. F. Tabor, D. D. Tan, S. S. Han, S. A. Young, Z. L. E. Seeger, M. J. Pottage, C. J. Garvey, B. L. Wilkinson, Chem. – Eur. J. 2014, 20, 13881.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFamu7bL&md5=884170e5176f5c5aaa9ffab892a12e33CAS | 25212733PubMed |

[15]  R. F. Tabor, M. J. Pottage, C. J. Garvey, B. L. Wilkinson, Chem. Commun. 2015, 5509.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvF2jtrvL&md5=2ef61ba59ca865f0a4fd1008a6306636CAS |

[16]  H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVOis78%3D&md5=3e33429247db796b672383c12b19ab63CAS |

[17]  B. L. Wilkinson, L. F. Bornaghi, S.-A. Poulsen, T. A. Houston, Tetrahedron 2006, 62, 8115.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvFeltbk%3D&md5=fea7a374e9bc8620789b45a1767049bdCAS |

[18]  J. D. Berry, M. J. Neeson, R. R. Dagastine, D. Y. C. Chan, R. F. Tabor, J. Colloid Interface Sci. 2015, 454, 226.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXoslCntrk%3D&md5=e6f64254965e4621ce1847a24167d37cCAS | 26037272PubMed |

[19]  E. Chevallier, A. Mamane, H. A. Stone, C. Tribet, F. Lequeux, C. Monteux, Soft Matter 2011, 7, 7866.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFektLbP&md5=ba552c7faba160a3a189d318547c8db2CAS |

[20]  J. H. Yoon, S. Yoon, Phys. Chem. Chem. Phys. 2011, 13, 12900.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXosVWju78%3D&md5=a332f62c1f9d4813e81daa6cf06b7b85CAS | 21674114PubMed |

[21]  (a) I. Mita, K. Horie, K. Hirao, Macromolecules 1989, 22, 558.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtVCltrg%3D&md5=535b94bdbc983a7207bd6f005185f481CAS |
      (b) M. Ueda, J. Non-Cryst. Solids 1993, 163, 125.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) K. Gille, H. Knoll, K. Quitzsch, Int. J. Chem. Kinet. 1999, 31, 337.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  (a) H. Nishioka, X. G. Liang, T. Kato, H. Asanuma, Angew. Chem. Int. Ed. 2012, 51, 1165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1elurfJ&md5=cac1c3db467a30069b67878c8ad08aedCAS |
      (b) O. Sadovski, A. A. Beharry, F. Zhang, G. A. Woolley, Angew. Chem. Int. Ed. 2009, 48, 1484.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  J. Campbell, Curr. Protoc. Chem. Biol. 2011, 2, 195.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  J. Eastoe, S. Gold, D. C. Steytler, Aust. J. Chem. 2007, 60, 630.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCit7bJ&md5=12593f3671a1fd32351dd26a56067dccCAS |