Register      Login
Crop and Pasture Science Crop and Pasture Science Society
Plant sciences, sustainable farming systems and food quality
RESEARCH ARTICLE

Sensitivity to three Parastagonospora nodorum necrotrophic effectors in current Australian wheat cultivars and the presence of further fungal effectors

Kar-Chun Tan A , Ormonde D. C. Waters A , Kasia Rybak A , Eva Antoni A , Eiko Furuki A and Richard P. Oliver A B
+ Author Affiliations
- Author Affiliations

A The Australian Centre For Necrotrophic Fungal Pathogens, Department of Environment and Agriculture, Curtin University, Bentley WA 6102, Australia.

B Corresponding author. Email: Richard.Oliver@curtin.edu.au

Crop and Pasture Science 65(2) 150-158 https://doi.org/10.1071/CP13443
Submitted: 31 May 2013  Accepted: 20 December 2013   Published: 20 February 2014

Abstract

Parastagonospora nodorum is a major fungal pathogen of wheat in Australia, causing septoria nodorum blotch (SNB). Virulence of P. nodorum is quantitative and depends largely on multiple effector–host sensitivity gene interactions. The pathogen utilises a series of proteinaceous, necrotrophic effectors to facilitate disease development on wheat cultivars that possess appropriate dominant sensitivity loci. Thus far, three necrotrophic effector genes have been cloned. Proteins derived from these genes were used to identify wheat cultivars that confer effector sensitivity. The goal of this study was to determine whether effector sensitivity could be used to enhance breeding for SNB resistance. We have demonstrated that SnTox1 effector sensitivity is common in current commercial Western Australian wheat cultivars. Thirty-three of 46 cultivars showed evidence of sensitivity to SnTox1. Of these, 19 showed moderate or strong chlorotic/necrotic responses to SnTox1. Thirteen were completely insensitive to SnTox1. Disease susceptibility was most closely associated with SnTox3 sensitivity. We have also identified biochemical evidence of a novel chlorosis-inducing protein or proteins in P. nodorum culture filtrates unmasked in strains that lack expression of ToxA, SnTox1 and SnTox3 activities.

Additional keywords: necrotrophic effector (NE), septoria nodorum blotch, SnTox1, SnTox3, ToxA, wheat.


References

Abeysekara NS, Faris JD, Chao S, McClean PE, Friesen TL (2012) Whole-genome QTL analysis of Stagonospora nodorum blotch resistance and validation of the SnTox4-Snn4 interaction in hexaploid wheat. Phytopathology 102, 94–104.
Whole-genome QTL analysis of Stagonospora nodorum blotch resistance and validation of the SnTox4-Snn4 interaction in hexaploid wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFCjtL8%3D&md5=73da4550c63777c4a809820926f949f4CAS | 21864084PubMed |

Ciuffetti LM, Tuori RP, Gaventa JM (1997) A single gene encodes a selective toxin causal to the development of tan spot of wheat. The Plant Cell 9, 135–144.

Crook AD, Friesen TL, Liu ZH, Ojiambo PS, Cowger C (2012) Novel necrotrophic effectors from Stagonospora nodorum and corresponding host sensitivities in winter wheat germplasm in the southeastern United States. Phytopathology 102, 498–505.
Novel necrotrophic effectors from Stagonospora nodorum and corresponding host sensitivities in winter wheat germplasm in the southeastern United States.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38rktFOitg%3D%3D&md5=be6d417aea48de5031755cd4f44eef59CAS | 22494247PubMed |

Czembor PC, Arseniuk E, Czaplicki A, Song Q, Cregan PB, Ueng PP (2003) QTL mapping of partial resistance in winter wheat to Stagonospora nodorum blotch. Genome 46, 546–554.
QTL mapping of partial resistance in winter wheat to Stagonospora nodorum blotch.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsVersbo%3D&md5=66bd9e9dc6776c1e9fbbd6d0f8e42224CAS | 12897862PubMed |

Ellwood SR, Syme RA, Moffat CS, Oliver RP (2012) Evolution of three Pyrenophora cereal pathogens: Recent divergence, speciation and evolution of non-coding DNA. Fungal Genetics and Biology 49, 825–829.
Evolution of three Pyrenophora cereal pathogens: Recent divergence, speciation and evolution of non-coding DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1aktbrP&md5=d7d4910e6c7072c2aeba520d1e52dc7fCAS | 22850609PubMed |

Faris JD, Zhang Z, Lu H, Lu S, Reddy L, Cloutier S, Fellers JP, Meinhardt SW, Rasmussen JB, Xu SS (2010) A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proceedings of the National Academy of Sciences of the United States of America 107, 13544–13549.
A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1GmsLzN&md5=5242a357bcf97ad0755c02b352c19423CAS | 20624958PubMed |

Francki MG, Shankar M, Walker E, Loughman R, Golzar H, Ohm H (2011) New quantitative trait loci in wheat for flag leaf resistance to Stagonospora nodorum blotch. Phytopathology 101, 1278–1284.
New quantitative trait loci in wheat for flag leaf resistance to Stagonospora nodorum blotch.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3Mbht1OltA%3D%3D&md5=096e1748bb12790d6214b5a733a69fb5CAS | 21770777PubMed |

Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, Rasmusen JB, Solomon PS, McDonald BA, Oliver RP (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nature Genetics 38, 953–956.
Emergence of a new disease as a result of interspecific virulence gene transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVChu7c%3D&md5=51b7854af38ec7a71bcc97c10914f835CAS | 16832356PubMed |

Friesen TL, Faris JD, Solomon PS, Oliver RP (2008) Host-specific toxins: effectors of necrotrophic pathogenicity. Cellular Microbiology 10, 1421–1428.
Host-specific toxins: effectors of necrotrophic pathogenicity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotF2hu7Y%3D&md5=0576dad3b06736b1739a96737baa14e1CAS | 18384660PubMed |

Friesen TL, Chu C, Xu SS, Faris JD (2012) SnTox5-Snn5: a novel Stagonospora nodorum effector–wheat gene interaction and its relationship with the SnToxA–Tsn1 and SnTox3–Snn3–B1 interactions. Molecular Plant Pathology 13, 1101–1109.
SnTox5-Snn5: a novel Stagonospora nodorum effector–wheat gene interaction and its relationship with the SnToxA–Tsn1 and SnTox3–Snn3–B1 interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGqtbzM&md5=ef9ffc9eaed6d9cbf936e5bdc5985cc3CAS | 22830423PubMed |

Liu ZH, Faris JD, Meinhardt SW, Ali S, Rasmussen JB, Friesen TL (2004a) Genetic and physical mapping of a gene conditioning sensitivity in wheat to a partially purified host-selective toxin produced by Stagonospora nodorum. Phytopathology 94, 1056–1060.
Genetic and physical mapping of a gene conditioning sensitivity in wheat to a partially purified host-selective toxin produced by Stagonospora nodorum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVCjurw%3D&md5=c39ae8187516c143cac4853dbd069298CAS | 18943793PubMed |

Liu ZH, Friesen TL, Rasmussen JB, Ali S, Meinhardt SW, Faris JD (2004b) Quantitative trait loci analysis and mapping of seedling resistance to Stagonospora nodorum leaf blotch in wheat. Phytopathology 94, 1061–1067.
Quantitative trait loci analysis and mapping of seedling resistance to Stagonospora nodorum leaf blotch in wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXovVCjur0%3D&md5=147d98bfcea9b2413f04fdeba83f93d5CAS | 18943794PubMed |

Liu Z, Faris JD, Oliver RP, Tan K-C, Solomon PS, McDonald MC, McDonald BA, Nunez A, Lu S, Rasmussen JB (2009) SnTox3 acts in effector triggered susceptibility to induce disease on wheat carrying the Snn3 gene. PLoS Pathogens 5, e1000581
SnTox3 acts in effector triggered susceptibility to induce disease on wheat carrying the Snn3 gene.Crossref | GoogleScholarGoogle Scholar | 19806176PubMed |

Liu Z, Zhang Z, Faris JD, Oliver RP, Syme R, McDonald MC, McDonald BA, Solomon PS, Lu S, Shelver WL, Xu S, Friesen TL (2012) The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1. PLoS Pathogens 8, e1002467
The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVyisLs%3D&md5=f8c5cf0124c8511029b68514b4a13b19CAS | 22241993PubMed |

McDonald MC, Oliver RP, Friesen TL, Brunner PC, McDonald BA (2013) Global diversity and distribution of three necrotrophic effectors in Phaeosphaeria nodorum and related species. New Phytologist 199, 241–251.
Global diversity and distribution of three necrotrophic effectors in Phaeosphaeria nodorum and related species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFart7k%3D&md5=4ced7dfe9d08319fb93696aaeeb3b049CAS | 23550706PubMed |

Murray GM, Brennan JP (2009) Estimating disease losses to the Australian wheat industry. Australasian Plant Pathology 38, 558–570.
Estimating disease losses to the Australian wheat industry.Crossref | GoogleScholarGoogle Scholar |

Oliver RP, Solomon PS (2010) New developments in pathogenicity and virulence of necrotrophs. Current Opinion in Plant Biology 13, 415–419.
New developments in pathogenicity and virulence of necrotrophs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1Ojsr0%3D&md5=b77fcb8dacb4023a888342b376f34ef7CAS | 20684067PubMed |

Oliver RP, Rybak K, Solomon PS, Ferguson-Hunt M (2009) Prevalence of ToxA-sensitive alleles of the wheat gene Tsn1 in Australian and Chinese wheat cultivars. Crop & Pasture Science 60, 348–352.
Prevalence of ToxA-sensitive alleles of the wheat gene Tsn1 in Australian and Chinese wheat cultivars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslGis7g%3D&md5=066c93c5bafda1b2bef1b9497d7c7da2CAS |

Oliver RP, Friesen TL, Faris JD, Solomon PS (2012) Stagonospora nodorum: from pathology to genomics and host resistance. Annual Review of Phytopathology 50, 23–43.
Stagonospora nodorum: from pathology to genomics and host resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWht7zN&md5=6a39d7d155d19cf6a60d11b35d76a69fCAS | 22559071PubMed |

Oliver R, Lichtenzveig J, Tan KC, Waters O, Rybak K, Lawrence J, Friesen T, Burgess P (2014) Absence of detectable yield penalty associated with insensitivity to Pleosporales necrotrophic effectors in wheat grown in the West Australian wheat belt. Plant Pathology,
Absence of detectable yield penalty associated with insensitivity to Pleosporales necrotrophic effectors in wheat grown in the West Australian wheat belt.Crossref | GoogleScholarGoogle Scholar | in press.

Quaedvlieg W, Verkley GJ, Shin HD, Barreto RW, Alfenas AC, Swart WJ, Groenewald JZ, Crous PW (2013) Sizing up Septoria. Studies in Mycology 75, 307–390.
Sizing up Septoria.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3sbmtlGguw%3D%3D&md5=768ebefb4731f032041947bed8d5b03eCAS | 24014902PubMed |

Shackley B, Zaicou-Kunusch C, Dhammu H, Shankar M, Amjad M, Young K (2013) ‘Wheat variety guide for WA 2013.’ (Department of Agriculture and Food: South Perth, W. Aust.)

Solomon PS, Tan KC, Sanchez P, Cooper RM, Oliver RP (2004) The disruption of a Gα subunit sheds new light on the pathogenicity of Stagonospora nodorum on wheat. Molecular Plant-Microbe Interactions 17, 456–466.
The disruption of a Gα subunit sheds new light on the pathogenicity of Stagonospora nodorum on wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjs1Gks7o%3D&md5=ede12c882292429edfe65da2e23b430aCAS | 15141949PubMed |

Solomon PS, Tan KC, Oliver RP (2005) Mannitol 1-phosphate metabolism is required for sporulation in planta of the wheat pathogen Stagonospora nodorum. Molecular Plant-Microbe Interactions 18, 110–115.
Mannitol 1-phosphate metabolism is required for sporulation in planta of the wheat pathogen Stagonospora nodorum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptFCksA%3D%3D&md5=7e0112cf974b8e7c0cc3b18629a1ea8bCAS | 15720079PubMed |

Solomon PS, Lowe RGT, Tan K-C, Waters ODC, Oliver RP (2006a) Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat. Molecular Plant Pathology 7, 147–156.
Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat.Crossref | GoogleScholarGoogle Scholar | 20507435PubMed |

Solomon PS, Rybak K, Trengove RD, Oliver RP (2006b) Investigating the role of calcium/calmodulin-dependent protein kinases in Stagonospora nodorum. Molecular Microbiology 62, 367–381.
Investigating the role of calcium/calmodulin-dependent protein kinases in Stagonospora nodorum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFyru77F&md5=0ba58e55bb78eeb076c267e70a61e365CAS | 17020577PubMed |

Solomon PS, IpCho SVS, Hane JK, Tan KC, Oliver RP (2008) A quantitative PCR approach to determine gene copy number. Fungal Genetics Reports 55, 5–8.

Syme RA Hane JK Friesen TL Oliver RP 2013 Resequencing and comparative genomics of Stagonospora nodorum; sectional gene absence and effector discovery. G3 3 959 969 . 10.1534/g3.112.004994

Tan K-C, Oliver RP, Solomon PS, Moffat CS (2010) Proteinaceous necrotrophic effectors in fungal virulence. Functional Plant Biology 37, 907–912.
Proteinaceous necrotrophic effectors in fungal virulence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyqt7vO&md5=d7f3ec41c6a3541d1b325e902be618e9CAS |

Tan K-C, Ferguson-Hunt M, Rybak K, Waters ODC, Stanley WA, Bond CS, Stukenbrock EH, Friesen TL, Faris JD, McDonald BA, Oliver RP (2012) Quantitative variation in effector activity of ToxA isoforms from Stagonospora nodorum and Pyrenophora tritici-repentis. Molecular Plant-Microbe Interactions 25, 515–522.
Quantitative variation in effector activity of ToxA isoforms from Stagonospora nodorum and Pyrenophora tritici-repentis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkslSkt70%3D&md5=8b20c7552030938432780fcbd7cee435CAS | 22250581PubMed |

Waters ODC, Lichtenzveig J, Rybak K, Friesen TL, Oliver RP (2011) Prevalence and importance of sensitivity to the Stagonospora nodorum necrotrophic effector SnTox3 in current Western Australian wheat cultivars. Crop & Pasture Science 62, 556–562.
Prevalence and importance of sensitivity to the Stagonospora nodorum necrotrophic effector SnTox3 in current Western Australian wheat cultivars.Crossref | GoogleScholarGoogle Scholar |

Zhang Z, Friesen TL, Xu SS, Shi G, Liu Z, Rasmussen JB, Faris JD (2011) Two putatively homoeologous wheat genes mediate recognition of SnTox3 to confer effector-triggered susceptibility to Stagonospora nodorum. The Plant Journal 65, 27–38.
Two putatively homoeologous wheat genes mediate recognition of SnTox3 to confer effector-triggered susceptibility to Stagonospora nodorum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2rsLc%3D&md5=a3eba2c59a9f08badf9378c5c6cdfa5cCAS | 21175887PubMed |