Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Dissipation of sulfamethoxazole, trimethoprim and tylosin in a soil under aerobic and anoxic conditions

Feng Liu A , Guang-Guo Ying A B , Ji-Feng Yang A , Li-Jun Zhou A , Ran Tao A , Li Wang A , Li-Juan Zhang A and Ping-An Peng A
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.

B Corresponding author. Email: guangguo.ying@gmail.com

Environmental Chemistry 7(4) 370-376 https://doi.org/10.1071/EN09160
Submitted: 9 March 2010  Accepted: 4 June 2010   Published: 20 August 2010

Environmental context. Wide application of antibiotics in the treatment of human beings and animals has led to increasing concern about their safe disposal. After use, antibiotics may enter the soil environment via disposal of wastes such as biosolids and animal manure. We investigated the biotic and abiotic factors that influence the dissipation in soil of three commonly used antibiotics sulfamethoxazole, trimethoprim and tylosin.

Abstract. Antibiotics could enter soil via application of biosolids as fertilisers, thus resulting in soil contamination. This study investigated the persistence of sulfamethoxazole, trimethoprim and tylosin in a soil under aerobic and anoxic conditions. The dissipation of the antibiotics in the soil followed first-order reaction kinetics. The half-lives of sulfamethoxazole, trimethoprim and tylosin were 2, 4 and 8 days in non-sterile soil under aerobic conditions respectively. Under anoxic conditions, their half-lives in non-sterile soil were 7, 11 and 16 days respectively. Sulfamethoxazole and trimethoprim dissipated more rapidly in non-sterile soil than in sterile soil. Biodegradation played a major role in the dissipation of sulfamethoxazole and trimethoprim in the soil. No significant difference was found for tylosin between the sterile and non-sterile treatments under both aerobic and anaerobic conditions, suggesting that abiotic factors were responsible for the dissipation of tylosin in the soil.

Additional keywords: antibiotics, degradation, redox conditions.


Acknowledgement

The authors acknowledge the financial support from the Earmarked Fund of the State Key Laboratory of Organic Geochemistry, the National Natural Science Foundation of China (NSFC40771180, 40688001 and 40821003) and Guangdong Provincial Natural Science Foundation (8251064004000001). This is a contribution (1199) from the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences.


References


[1]   A. K. Sarmah , M. T. Meyer , A. B. A. Boxall , A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment: a review. Chemosphere 2006 , 65,  725.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[2]   K. Stoob , H. P. Singer , S. R. Mueller , R. P. Schwarzenbach , C. H. Stamm , Dissipation and transport of veterinary sulfonamide antibiotics after manure application to grassland in a small catchment. Environ. Sci. Technol. 2007 , 41,  7349.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[3]   J. F. Yang , G. G. Ying , L. H. Yang , J. L. Zhao , F. Liu , R. Tao , Z. Q. Yu , P. A. Peng , Degradation behavior of sulfadiazine in soils under different conditions. J. Environ. Sci. Health B 2009 , 44,  241.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[4]   K. Kumar , S. C. Gupta , Y. Chander , A. K. Singh , Antibiotic use in agriculture and its impact on the terrestrial environment. Adv. Agron. 2005 , 87,  1.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[5]   K. Kümmerer , A. Henninger , Promoting resistance by the emission of antibiotics from hospitals and households into effluents. Clin. Microbiol. Infect. 2003 , 9,  1203.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[6]   A. B. A. Boxall , D. W. Kolpin , B. Halling-Sørensen , J. Tolls , Are veterinary medicines causing environmental risks? Environ. Sci. Technol. 2003 , 37,  286A.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[7]   M. S. Díaz-Cruz , M. J. López de Alda , D. Barceló , Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. Trends Analyt. Chem. 2003 , 22,  340.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   B. Halling-Sørensen , Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 2000 , 40,  731.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[9]   B. Halling-Sørensen , S. N. Nielsen , P. F. Lanzky , F. Ingerslev , H. C. Holten-Lützhøft , S. E. Jørgensen , Occurrence, fate and effects of pharmaceutical substances in the environment – a review. Chemosphere 1998 , 36,  357.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[10]   S. E. Jørgensen , B. Halling-Sørensen , Drugs in the environment. Chemosphere 2000 , 40,  691.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[11]   T. Backhaus , L. H. Grimme , The toxicity of antibiotic agents to the luminescent bacterium Vibrio fischeri. Chemosphere 1999 , 38,  3291.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[12]   M. Farré , S. Pérez , L. Kantiani , D. Barceló , Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. Trends Analyt. Chem. 2008 , 27,  991.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   K. Poole , Efflux-mediated resistance to fluoroquinolones in Gram-negative bacteria. Antimicrob. Agents Chemother. 2000 , 44,  2233.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[14]   F. F. Reinthaler , J. Posch , G. Feierl , G. Wüst , D. Haas , G. Ruckenbauer , F. Mascher , E. Marth , Antibiotic resistance of E. coli in sewage and sludge. Water Res. 2003 , 37,  1685.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[15]   W. D. Kong , Y. G. Zhu , B. J. Fu , P. Marschner , J. Z. He , The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community. Environ. Pollut. 2006 , 143,  129.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[16]   W. D. Kong , Y. G. Zhu , Y. C. Liang , J. Zhang , F. A. Smith , M. Yang , Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environ. Pollut. 2007 , 147,  187.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[17]   A. Göbel , A. Thomsen , C. S. McArdell , A. Joss , W. Giger , Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environ. Sci. Technol. 2005 , 39,  3981.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[18]   A. C. Kolz , S. K. Ong , T. B. Moorman , Sorption of tylosin onto swine manure. Chemosphere 2005 , 60,  284.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[19]   H. Dolliver , S. Gupta , S. Noll , Antibiotic degradation during manure composting. J. Environ. Qual. 2008 , 37,  1245.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[20]   D. F. Hu , J. R. Coats , Aerobic degradation and photolysis of tylosin in water and soil. Environ. Toxicol. Chem. 2007 , 26,  884.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[21]   A. Al-Ahmad , F. D. Daschner , K. Kümmerer , Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste-water bacteria. Arch. Environ. Contam. Toxicol. 1999 , 37,  158.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[22]   R. Alexy , T. Kümpel , K. Kümmerer , Assessment of degradation of 18 antibiotics in the Closed Bottle Test. Chemosphere 2004 , 57,  505.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[23]   H. T. Lai , J. H. Hou , Light and microbial effects on the transformation of four sulfonamides in eel pond water and sediment. Aquaculture 2008 , 283,  50.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[24]   P. Eichhorn , P. L. Ferguson , S. Pérez , D. S. Aga , Application of ion trap-MS with H/D exchange and QqTOF-MS in the identification of microbial degradates of trimethoprim in nitrifying activated sludge. Anal. Chem. 2005 , 77,  4176.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[25]   S. Pérez , P. Eichhorn , D. S. Aga , Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. Environ. Toxicol. Chem. 2005 , 24,  1361.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[26]   S. A. I. Mohring , I. Strzysch , M. R. Fernandes , T. K. Kiffmeyer , J. Tuerk , G. Hamscher , Degradation and elimination of various sulfonamides during anaerobic fermentation: a promising step on the way to sustainable pharmacy? Environ. Sci. Technol. 2009 , 43,  2569.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[27]   J. D. Li , Y. Q. Cai , Y. L. Shi , S. F. Mou , G. B. Jiang , Determination of sulfonamide compounds in sewage and river by mixed hemimicelles solid-phase extraction prior to liquid chromatography spectrophotometry. J. Chromatogr. A 2007 , 1139,  178.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[28]   E. L. McClure , C. S. Wong , Solid phase microextraction of macrolide, trimethoprim, and sulfonamide antibiotics in wastewaters. J. Chromatogr. A 2007 , 1169,  53.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[29]   M. L. Loke , J. Tjørnelund , B. Halling-Sørensen , Determination of the distribution coefficient (log Kd) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure. Chemosphere 2002 , 48,  351.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[30]   J. Tolls , Sorption of veterinary pharmaceuticals in soils: a review. Environ. Sci. Technol. 2001 , 35,  3397.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[31]   M. Rabølle , N. H. Spliid , Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 2000 , 40,  7715.
         open url image1

[32]   C. Accinelli , W. C. Koskinen , J. M. Becker , M. J. Sadowsky , Environmental fate of two sulfonamide antimicrobial agents in soil. J. Agric. Food Chem. 2007 , 55,  2677.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[33]   F. Liu , G. G. Ying , R. Tao , J. L. Zhao , J. F. Yang , L. F. Zhao , Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ. Pollut. 2009 , 157,  1636.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[34]   S. Höltge , R. Kreuzig , Laboratory testing of sulfamethoxazole and its metabolite acetyl-sulfamethoxazole in soil. CLEAN: Soil, Air, Water 2007 , 35,  104.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   C. Wu , A. L. Spongberg , J. D. Witter , Sorption and biodegradation of selected antibiotics in biosolids. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2009 , 44,  454.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[36]   P. C. Wszolek , M. Alexander , Effects of desorption rate on the biodegradation of n-alkylamines bound to clay. J. Agric. Food Chem. 1979 , 27,  410.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[37]   V. B. Manilal , M. Alexander , Factors affecting the microbial degradation of phenanthrene in soil. Appl. Microbiol. Biotechnol. 1991 , 35,  401.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[38]   F. Ingerslev , L. Toräng , M. L. Loke , B. Halling-Sørensen , N. Nyholm , Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems. Chemosphere 2001 , 44,  865.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[39]   C. X. Wu , A. L. Spongberg , J. D. Witter , Determination of the persistence of pharmaceuticals in biosolids using liquid-chromatography tandem mass spectrometry. Chemosphere 2008 , 73,  511.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[40]   J. F. Yang , G. G. Ying , L. J. Zhou , S. Liu , J. L. Zhao , Dissipation of oxytetracycline in soils under different redox conditions. Environ. Pollut. 2009 , 157,  2704.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[41]   K. A. Loftin , C. D. Adams , M. T. Meyer , R. Surampalli , Effects of ionic strength, temperature, and pH on degradation of selected antibiotics. J. Environ. Qual. 2008 , 37,  378.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[42]   H. M. Bialk , A. J. Simpson , J. A. Pedersen , Cross-coupling of sulfonamide antimicrobial agents with model humic constitutents. Environ. Sci. Technol. 2005 , 39,  4463.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[43]   M. Kahle , C. Stamm , Sorption of the veterinary antimicrobial sulfathiazole to organic materials of different origin. Environ. Sci. Technol. 2007 , 41,  132.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[44]   M. Radke , C. Lauwigi , G. Heinkele , T. E. Mürdter , M. Letzel , Fate of the antibiotic sulfamethoxazole and its two major human metabolites in a water sediment test. Environ. Sci. Technol. 2009 , 43,  3135.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[45]   R. H. Lindberg , P. Wennberg , M. I. Johansson , M. Tysklind , B. A. V. Andersson , Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden. Environ. Sci. Technol. 2005 , 39,  3421.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[46]   H. Hektoen , J. A. Berge , V. Hormazabal , M. Yndestad , Persistence of antibacterial agents in marine sediments. Aquaculture 1995 , 133,  175.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[47]   A. Göbel , C. S. McArdell , A. Joss , H. Siegrist , W. Giger , Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci. Total Environ. 2007 , 372,  361.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[48]   R. H. Lindberg , U. Olofsson , P. Rendahl , M. I. Johansson , M. Tysklind , B. A. V. Andersson , Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge. Environ. Sci. Technol. 2006 , 40,  1042.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[49]   S. A. Sassman , A. K. Sarmah , L. S. Lee , Sorption of tylosin A, D, and A-aldol and degradation of tylosin A in soils. Environ. Sci. Technol. 2007 , 26,  1627.
         open url image1