Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Volatile organic compounds sources in Paris in spring 2007. Part I: qualitative analysis

Valérie Gros A E , Cécile Gaimoz A , Frank Herrmann B , Tom Custer B , Jonathan Williams B , Bernard Bonsang A , Stéphane Sauvage C D , Nadine Locoge C D , Odile d’Argouges A , Roland Sarda-Estève A and Jean Sciare A
+ Author Affiliations
- Author Affiliations

A Laboratoire des Sciences du Climat et de l’Environnement (LSCE), Unité Mixte CEA-CNRS-UVSQ (Commissariat à l’Energie Atomique, Centre National de la Recherche Scientifique, Université de Versailles Saint-Quentin-en-Yvelines), F-91198 Gif-sur-Yvette, France.

B Max Planck Institute for Chemistry, Air Chemistry Department, D-55128 Mainz, Germany.

C Université de Lille Nord de France, F-59000 Lille, France.

D Ecole des Mines Douai, Département Chimie Environnement, F-59508 Douai, France.

E Corresponding author. Email: valerie.gros@lsce.ipsl.fr

Environmental Chemistry 8(1) 74-90 https://doi.org/10.1071/EN10068
Submitted: 24 June 2010  Accepted: 20 October 2010   Published: 28 February 2011

Environmental context. Megacities are huge hotspots of pollutants that have an impact on atmospheric composition on local to larger scales. This study presents for the first time detailed results of measurements of volatile organic compounds in Paris and shows that, whereas non-methane hydrocarbons are mainly of local and regional origin associated with traffic emissions, a significant part of oxygenated volatile organic compounds originates from continental import. This highlights the importance of measuring volatile organic compounds instead of non-methane hydrocarbons alone in source classification studies.

Abstract. High-time-resolution measurements of volatile organic compounds (VOCs) were performed in the Paris city centre in spring 2007. The studied region was influenced mainly by air masses of two origins: (1) from the Atlantic Ocean, and (2) from north-eastern Europe. Although the baseline levels (i.e. those not influenced by local emissions) of non-methane hydrocarbons (NMHC) and CO were only slightly impacted by changes in the air-mass origin, oxygenated compounds such as acetone and methanol showed much higher baseline levels in continentally influenced air masses. This suggests that NMHC and CO mixing ratios were mainly influenced by local-to-regional-scale sources whereas oxygenated compounds had a more significant continental-scale contribution. This highlights the importance of measuring VOCs instead of NMHC alone in source classification studies. The period of Atlantic air influence was used to characterise local pollution, which was dominated by traffic-related emissions, although traffic represents the source of only one third of total VOCs emissions in the local inventory. In addition to traffic-related sources, additional sources were identified; in particular, emissions from dry-cleaning activities were identified by the use of a specific tracer (i.e. tetrachloroethylene).

Additional keywords: diurnal variation, emission, Ile de France, oxygenated compounds, VOC.


References

[1]  B. R. Gurjar, J. Lelieveld, New directions: megacities and global change. Atmos. Environ. 2005, 39, 391.
New directions: megacities and global change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKgurnM&md5=d839e1c50f68dd4cf27ebd9b38397b9bCAS |

[2]  S. Sillman, The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos. Environ. 1999, 33, 1821.
The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlGltL8%3D&md5=9c6b53b4ab4de3b701e6ff447475ab1aCAS |

[3]  L. Deguillaume, M. Beekmann, C. Derognat, Uncertainty evaluation of ozone production and its sensitivity to emission changes over the Ile-de-France region during summer periods. J. Geophys. Res. Atmos. 2008, 113, D02304.
Uncertainty evaluation of ozone production and its sensitivity to emission changes over the Ile-de-France region during summer periods.Crossref | GoogleScholarGoogle Scholar |

[4]  Pernelet-Joly  V., Lenir  G., Perrussel  O., Marfaing  H., Kauffmann  A., Mesure de l’exposition individuelle d’un groupe de Franciliens à trois polluants atmosphériques durant deux journées: participation de Champlanais et positionnement des résultats les concernant. Environnement Risques & Santé 2009, 8, 213. Available at http://www.jle.com/fr/revues/sante_pub/ers/e-docs/00/04/4A/A4/resume.phtml [In French, verified 4 January 2011].

[5]  S. Vardoulakis, N. Gonzalez-Flesca, B. E. A. Fisher, Assessment of traffic-related air pollution in two street canyons in Paris: implications for exposure studies. Atmos. Environ. 2002, 36, 1025.
Assessment of traffic-related air pollution in two street canyons in Paris: implications for exposure studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtVSlsbw%3D&md5=591c6a095a610279fc26b90765c9aab2CAS |

[6]  S. Vardoulakis, N. Gonzalez-Flesca, B. E. A. Fisher, K. Pericleous, Spatial variability of air pollution in the vicinity of a permanent monitoring station in central Paris. Atmos. Environ. 2005, 39, 2725.
Spatial variability of air pollution in the vicinity of a permanent monitoring station in central Paris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFWru70%3D&md5=6bffa13ac8cdf4a86c253fcd65947748CAS |

[7]  V. Gros, J. Sciare, T. Yu, Air-quality measurements in megacities: focus on gaseous organic and particulate pollutants and comparison between two contrasted cities, Paris and Beijing. C. R. Geosci. 2007, 339, 764.
Air-quality measurements in megacities: focus on gaseous organic and particulate pollutants and comparison between two contrasted cities, Paris and Beijing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKis7c%3D&md5=a5f575730a8e5ebbc8c82dbd28e8311aCAS |

[8]  Bilan des émissions de polluants atmosphériques et de gaz à effet de serre en Ile de France (données des référence de l’année 2005) 2010 (AIRPARIF: Paris). Available at http://www.airparif.asso.fr/airparif/pdf/Rinventaire_2005_201004.pdf [In French, verified 4 January 2011].

[9]  C. Gaimoz, S. Sauvage, V. Gros, F. Herrmann, J. Williams, N. Locoge, O. Perrussel, B. Bonsang, O. d’Argouges, R. Sarda-Esteve, J. Sciare, Volatile organic compounds sources in Paris in spring. 2007. Part II: source apportionment using positive matrix factorisation. Environ. Chem. 2011, 8, 91.
Volatile organic compounds sources in Paris in spring. 2007. Part II: source apportionment using positive matrix factorisation.Crossref | GoogleScholarGoogle Scholar |

[10]  O. Favez, H. Cachier, J. Sciare, R. Sarda-Esteve, L. Martinon, Evidence for a significant contribution of wood-burning aerosols to PM2.5 during the winter season in Paris, France. Atmos. Environ. 2009, 43, 3640.
Evidence for a significant contribution of wood-burning aerosols to PM2.5 during the winter season in Paris, France.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVymsL4%3D&md5=3ac98aa9664d84517b2e0f208388b0adCAS |

[11]  B. Bonsang, A. Al Aarbaoui, J. Sciare, Diurnal variation of non-methane hydrocarbons in the subantarctic atmosphere. Environ. Chem. 2008, 5, 16.
Diurnal variation of non-methane hydrocarbons in the subantarctic atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlagsLo%3D&md5=5d6438c8782f5b7c09b77da449372675CAS |

[12]  W. Lindinger, A. Hansel, A. Jordan, On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) – Medical applications, food control and environmental research. Int. J. Mass Spectrom. 1998, 173, 191.
On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) – Medical applications, food control and environmental research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsFKqtLg%3D&md5=4f414d8ee227735233a90e872acbe259CAS |

[13]  J. de Gouw, C. Warneke, Measurements of volatile organic compounds in the Earth’s atmosphere using proton-transfer-reaction mass spectrometry. Mass Spectrom. Rev. 2007, 26, 223.
Measurements of volatile organic compounds in the Earth’s atmosphere using proton-transfer-reaction mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlKqtrY%3D&md5=50f7111b607aa7da84cd92d80b6c5abaCAS | 17154155PubMed |

[14]  R. S. Blake, P. S. Monks, A. M. Ellis, Proton-transfer reaction mass spectrometry. Chem. Rev. 2009, 109, 861.
Proton-transfer reaction mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvVWntLo%3D&md5=49962bfe6749cfb73f18f7da0129fb47CAS | 19215144PubMed |

[15]  J. Sciare, O. d’Argouges, R. Sarda-Esteve, C. Gaimoz, V. Gros, Q. Zhang, M. Beekmann, O. Sanchez, Comparison between simulated and observed chemical composition of fine aerosols in Paris (France) during springtime: contribution of regional versus continental emissions. Atmos. Chem. Phys. 2010, 10, 16861.
Comparison between simulated and observed chemical composition of fine aerosols in Paris (France) during springtime: contribution of regional versus continental emissions.Crossref | GoogleScholarGoogle Scholar |

[16]  Draxler  R. R., Hess  G. D., Description of the HYSPLIT_4 modeling system, NOAA Tech Memo ERL ARL-224 1997 (NOAA Air Resources Laboratory: Silver Spring, MD).

[17]  W. P. L. Carter, Development of ozone reactivity scales for volatile organic compounds. J. Air Waste Manage. Assoc. 1994, 44, 881..

[18]  S. Sauvage, H. Plaisance, N. Locoge, A. Wroblewski, P. Coddeville, J. C. Galloo, Long-term measurement and source apportionment of non-methane hydrocarbons in three French rural areas. Atmos. Environ. 2009, 43, 2430.
Long-term measurement and source apportionment of non-methane hydrocarbons in three French rural areas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktVejurg%3D&md5=a20ae3690539b331d45b755b41faa342CAS |

[19]  M. de Reus, H. Fischer, F. Arnold, J. de Gouw, R. Holzinger, C. Warneke, J. Williams, On the relationship between acetone and carbon monoxide in different air masses. Atmos. Chem. Phys. 2003, 3, 1709.
On the relationship between acetone and carbon monoxide in different air masses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtVaqs7o%3D&md5=fffb43dd665cac008e8f530a3feb8949CAS |

[20]  H. B. Singh, D. Ohara, D. Herlth, W. Sachse, D. R. Blake, J. D. Bradshaw, M. Kanakidou, P. J. Crutzen, Acetone in the atmosphere – distribution, sources, and sinks. J. Geophys. Res. – Atmos. 1994, 99, 1805.
Acetone in the atmosphere – distribution, sources, and sinks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXit1Gnsbk%3D&md5=e1585a610c4b1f00ba669188d6bff741CAS |

[21]  H. B. Singh, M. Kanakidou, P. J. Crutzen, D. J. Jacob, High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere. Nature 1995, 378, 50.
High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptVyru7Y%3D&md5=42e7dd57990b85fcd76f3cf8ff812917CAS |

[22]  T. Reiner, D. Sprung, C. Jost, R. Gabriel, O. L. Mayol-Bracero, M. O. Andreae, T. L. Campos, R. E. Shetter, Chemical characterization of pollution layers over the tropical Indian Ocean: signatures of emissions from biomass and fossil fuel burning. J. Geophys. Res. – Atmos. 2001, 106, 28497.
Chemical characterization of pollution layers over the tropical Indian Ocean: signatures of emissions from biomass and fossil fuel burning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1Gru7Y%3D&md5=1e4b27ec8bcb77707dfed1992a370f38CAS |

[23]  Passant  N. R., Speciation of UK emissions of non-methane volatile organic compounds. Report No. AEAT/ENV/R/0545, Issue 1 2002 (AEA Technology: Abingdon, UK). Available at http://www.airquality.co.uk/reports/empire/AEAT_ENV_0545_final_v2.pdf [Verified 13 January 2011].

[24]  A. Vlasenko, J. G. Slowik, J. W. Bottenheim, P. C. Brickell, R. Y. W. Chang, A. M. Macdonald, N. C. Shantz, S. J. Sjostedt, H. A. Wiebe, W. R. Leaitch, J. P. D. Abbatt, Measurements of VOCs by proton transfer reaction mass spectrometry at a rural Ontario site: sources and correlation to aerosol composition. J. Geophys. Res. – Atmos. 2009, 114, D21305.
Measurements of VOCs by proton transfer reaction mass spectrometry at a rural Ontario site: sources and correlation to aerosol composition.Crossref | GoogleScholarGoogle Scholar |

[25]  J. A. de Gouw, A. M. Middlebrook, C. Warneke, P. D. Goldan, W. C. Kuster, J. M. Roberts, F. C. Fehsenfeld, D. R. Worsnop, M. R. Canagaratna, A. A. P. Pszenny, W. C. Keene, M. Marchewka, S. B. Bertman, T. S. Bates, Budget of organic carbon in a polluted atmosphere: results from the New England Air Quality Study in 2002. J. Geophys. Res. – Atmos. 2005, 110, D16305.
Budget of organic carbon in a polluted atmosphere: results from the New England Air Quality Study in 2002.Crossref | GoogleScholarGoogle Scholar |

[26]  A. Kristensson, C. Johansson, R. Westerholm, E. Swietlicki, L. Gidhagen, U. Wideqvist, V. Vesely, Real-world traffic emission factors of gases and particles measured in a road tunnel in Stockholm, Sweden. Atmos. Environ. 2004, 38, 657.
Real-world traffic emission factors of gases and particles measured in a road tunnel in Stockholm, Sweden.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpslCns74%3D&md5=cc8a7d91c2af820b9662e206757e950bCAS |

[27]  G. Legreid, S. Reimann, M. Steinbacher, J. Staehelin, D. Young, K. Stemmler, Measurements of OVOCs and NMHCs in a Swiss highway tunnel for estimation of road transport emissions. Environ. Sci. Technol. 2007, 41, 7060.
Measurements of OVOCs and NMHCs in a Swiss highway tunnel for estimation of road transport emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVClsLjI&md5=6ffdde4844017360e6ca6a772ab4cc93CAS | 17993148PubMed |

[28]  Badol  C., Caractérisation des composés organiques volatils dans une atmosphère urbaine sous influence industrielle: de l’identification à la contribution des sources 2005, Ph.D. thesis, Université des Sciences et Technologies, Lille, France. Available at http://cdoc.ensm-douai.fr/emdcat/DetailDoc.aspx?DocID=114043 [Verified 4 January 2011].

[29]  A. Guenther, T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, C. Geron, Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181.
Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2hs7vF&md5=6b938f3516be16e0e4a267c057f0c117CAS |

[30]  A. Borbon, H. Fontaine, M. Veillerot, N. Locoge, J. C. Galloo, R. Guillermo, An investigation into the traffic-related fraction of isoprene at an urban location. Atmos. Environ. 2001, 35, 3749.
An investigation into the traffic-related fraction of isoprene at an urban location.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFygurw%3D&md5=ada43878c16b3ea03966149be53fd3bcCAS |

[31]  Tetrachloroethene, Concise International Chemical Assessment Document 68 2006 (World Health Organization Press: Geneva). Available at http://www.who.int/ipcs/publications/cicad/cicad68.pdf [Verified 4 January 2011].

[32]  Evaluation des risques sanitaires associés aux émissions de tétrachlroéthylène par trois installations francaises de nettoyage à sec, INERIS, Rapport d’études INERIS-DRC-07–85296–09788C 2007 (INERIS). Available at http://www.ineris.fr/centredoc/INERIS-DRC-07-85296-09788C-5.pdf [In French, verified 4 January 2011].

[33]  J. A. de Gouw, D. Welsh-Bon, C. Warneke, W. C. Kuster, L. Alexander, A. K. Baker, A. J. Beyersdorf, D. R. Blake, M. Canagaratna, A. T. Celada, L. G. Huey, W. Junkermann, T. B. Onasch, A. Salcido, S. J. Sjostedt, A. P. Sullivan, D. J. Tanner, O. Vargas, R. J. Weber, D. R. Worsnop, X. Y. Yu, R. Zaveri, Emission and chemistry of organic carbon in the gas and aerosol phase at a sub-urban site near Mexico City in March 2006 during the MILAGRO study. Atmos. Chem. Phys. 2009, 9, 3425.
Emission and chemistry of organic carbon in the gas and aerosol phase at a sub-urban site near Mexico City in March 2006 during the MILAGRO study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1amsbk%3D&md5=4dd685dcf116b51e5214b10ec1e3a2c0CAS |

[34]  S. J. Solomon, T. Custer, G. Schade, A. P. S. Dias, J. Burrows, Atmospheric methanol measurement using selective catalytic methanol to formaldehyde conversion. Atmos. Chem. Phys. 2005, 5, 2787.
Atmospheric methanol measurement using selective catalytic methanol to formaldehyde conversion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Kgsr%2FE&md5=4e740993f9bd5cca7b7c4c98095f6203CAS |