Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Changes in organic compound composition in soil following heating to maximum soil water repellency under anoxic conditions

I. Atanassova A B , S. H. Doerr A D and R. Bryant C
+ Author Affiliations
- Author Affiliations

A College of Science, Department of Geography, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.

B ‘N. Poushkarov’ Institute of Soil Science, 7 Shosse Bankya, Sofia 1080, Bulgaria.

C College of Engineering, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.

D Corresponding author. Email address: s.doerr@swan.ac.uk

Environmental Chemistry 9(4) 369-378 https://doi.org/10.1071/EN11122
Submitted: 4 October 2011  Accepted: 3 May 2012   Published: 6 July 2012

Environmental context. Heating of soils under wildfires can substantially reduce their ability to absorb rainfall, causing reduced vegetation recovery and increased erosion and flooding. This study examines, for the first time, the chemical changes in soil organic matter associated with heating in the oxygen-limited conditions typical under many wildfires. There was a noticeable tendency for production of non-polar compounds, which may ultimately contribute to a more persistent form of soil water repellency with important implications for managing fire affected terrain.

Abstract. Soil heating, as experienced during wildfires or management burns, can lead to extreme soil water repellency (WR). Previous work has focussed on the chemical composition of soil organic matter (SOM) that may be associated with WR in natural soil samples or samples heated in air. Under wildfires, however, oxygen supply is typically reduced and previous work has shown that the extreme WR induced under such conditions resists eventual destruction at temperatures ~200 °C higher than that of the same soil heated in air. This study examines, for the first time, the chemical changes in SOM associated with extreme WR following heating under oxygen limited conditions. Extracts obtained by accelerated solvent extraction (ASE), using mixtures of isopropyl alcohol/aqueous ammonia (IPA/NH3) and dichloromethane/methanol (DCM/MeOH), were analysed using gas chromatography–mass spectrometry (GC/MS). The data were compared with the SOM composition of the same soil unheated and following heating in air. In the absence of oxygen during soil heating, phthalic acid esters, substituted benzaldehydes, unsaturated amides and organophosphate esters were produced. In comparison with extracts of the same soil heated in air, there was a decreased methoxyphenol/phenol ratio, suggesting progressive demethoxylation and synthesis of new aromatic structures likely to promote extreme WR in soil.

Additional keywords: amides, aromatics, eucalyptus, fire, phthalates.


References

[1]  L. F. DeBano, The role of fire and soil heating on water repellency in wildland environments: a review. J. Hydrol. (Amst.) 2000, 231–232, 195.
The role of fire and soil heating on water repellency in wildland environments: a review.Crossref | GoogleScholarGoogle Scholar |

[2]  R. A. Shakesby, S. H. Doerr, Wildfire as a hydrological and geomorphological agent. Earth Sci. Rev. 2006, 74, 269.
Wildfire as a hydrological and geomorphological agent.Crossref | GoogleScholarGoogle Scholar |

[3]  S. H. Doerr, R. A. Shakesby, R. P. D. Walsh, Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth Sci. Rev. 2000, 51, 33.
Soil water repellency: Its causes, characteristics and hydro-geomorphological significance.Crossref | GoogleScholarGoogle Scholar |

[4]  J. A. González-Pérez, F. J. González-Vila, G. Almendros, H. Knicker, The effect of fire on soil organic matter – a review. Environ. Int. 2004, 30, 855.
The effect of fire on soil organic matter – a review.Crossref | GoogleScholarGoogle Scholar |

[5]  S. M. Savage, Mechanism of fire-induced water repellency in soil. Soil Sci. Soc. Am. Proc 1974, 38, 652.
Mechanism of fire-induced water repellency in soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXltF2ju7g%3D&md5=bdad1b70602a8bc4b954a87d65094041CAS |

[6]  L. F. DeBano, S. M. Savage, D. A. Hamilton, The transfer of heat and hydrophobic substances during burning. Soil Sci. Soc. Am. J. 1976, 40, 779.
The transfer of heat and hydrophobic substances during burning.Crossref | GoogleScholarGoogle Scholar |

[7]  S. H. Doerr, W. H. Blake, G. S. Humphreys, R. A. Shakesby, F. Stagnitti, S. H. Vuurens, Heating effects on water repellency in Australian eucalypt forest soils and their value in estimating wildfire soil temperatures. Int. J. Wildland Fire 2004, 13, 157.
Heating effects on water repellency in Australian eucalypt forest soils and their value in estimating wildfire soil temperatures.Crossref | GoogleScholarGoogle Scholar |

[8]  E. D. Goldberg, Black Carbon in the Environment: Properties and Distribution 1985 (Wiley: New York).

[9]  M. W. I. Schmidt, J. O. Skjemstad, C. I. Czimczik, B. Glaser, K.M. Prentice, Y. Gelinas, T. A. J. Kuhlbusch, Comparative analysis of black carbon in soils. Global Biogeochem. Cycles 2001, 15, 163.
Comparative analysis of black carbon in soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisVCht7Y%3D&md5=aa1007d5c82d34ad7114c3d8b4329792CAS |

[10]  C. A. Masiello, New directions in black carbon organic geochemistry. Mar. Chem. 2004, 92, 201.
New directions in black carbon organic geochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVChsLzK&md5=8b5c375a95d88dc5d592539999af132cCAS |

[11]  H. Knicker, How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochem. 2007, 85, 91.
How does fire affect the nature and stability of soil organic nitrogen and carbon? A review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlajs7c%3D&md5=b551d0c67c59f54ab4bd96eaa7451125CAS |

[12]  R. Bryant, S. H. Doerr, M. Helbig, Effect of oxygen deprivation on soil hydrophobicity during heating. Int. J. Wildland Fire 2005, 14, 449.
Effect of oxygen deprivation on soil hydrophobicity during heating.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CrtbzL&md5=5c9cd2e030d3f3f9644febb49af27595CAS |

[13]  G. Almendros, F. J. González-Vila, F. Martín, R. Frund, H. D. Ludemann, Solid state NMR studies of fire-induced changes in the structure of humic substances. Sci. Total Environ. 1992, 63, 117.

[14]  H. Knicker, G. Almendros, F. J. González-Vila, F. Martín, H. D. Lüdemann, 13C- and 15N-NMR spectroscopic examination of the transformation of organic nitrogen in plant biomass during thermal treatment. Soil Biol. Biochem. 1996, 28, 1053.
13C- and 15N-NMR spectroscopic examination of the transformation of organic nitrogen in plant biomass during thermal treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFartbc%3D&md5=15f7cf46d887d7060048a9032282b30cCAS |

[15]  D. F. Guinto, P. G. Saffigna, Z. H. Xu, A. P. N. House, M. C. S. Perera, Soil nitrogen mineralisation and organic matter composition revealed by 13C NMR spectroscopy under repeated prescribed burning in eucalypt forests of south-east Queensland. Aust. J. Soil Res. 1999, 37, 123.
Soil nitrogen mineralisation and organic matter composition revealed by 13C NMR spectroscopy under repeated prescribed burning in eucalypt forests of south-east Queensland.Crossref | GoogleScholarGoogle Scholar |

[16]  F. J. González-Vila, P. Tinoco, G. Almendros, F. Martín, Pyrolysis-GC-MS analysis of the formation and degradation stages of charred residues from lignocellulosic biomass. J. Agric. Food Chem. 2001, 49, 1128.
Pyrolysis-GC-MS analysis of the formation and degradation stages of charred residues from lignocellulosic biomass.Crossref | GoogleScholarGoogle Scholar |

[17]  G. Almendros, H. Knicker, F. J. González-Vila, Rearrangement of carbon and nitrogen forms in peat after progressive isothermal heating as determined by solid-state 13C- and 15N-NMR spectroscopies. Org. Geochem. 2003, 34, 1559.
Rearrangement of carbon and nitrogen forms in peat after progressive isothermal heating as determined by solid-state 13C- and 15N-NMR spectroscopies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1SksLw%3D&md5=5e821d2636368b1716ea92b5695971ceCAS |

[18]  H. Knicker, F. J. González-Vila, O. Polvillo, J. A. Gonzalez, G. Almendros, Fire-induced transformation of C- and N- forms in different organic soil fractions from a Dystric Cambisol under a Mediterranean pine forest (Pinus pinaster). Soil Biol. Biochem. 2005, 37, 701.
Fire-induced transformation of C- and N- forms in different organic soil fractions from a Dystric Cambisol under a Mediterranean pine forest (Pinus pinaster).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFyhtQ%3D%3D&md5=ba52a5448f6460054b3406c9dfb8258aCAS |

[19]  G. Almendros, F. Martín, F. J. González-Vila, Effects of fire on humic and lipid fractions in a Dystric Xerochrept in Spain. Geoderma 1988, 42, 115.
Effects of fire on humic and lipid fractions in a Dystric Xerochrept in Spain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlt1Oqs70%3D&md5=40243f56585986c2ec32e9bf1d0330a7CAS |

[20]  G. Almendros, F. J. González-Vila, F. Martín, Fire-induced transformation of soil organic matter from an oak forest: an experimental approach to the effects of fire on humic substances. Soil Sci. 1990, 149, 158.
Fire-induced transformation of soil organic matter from an oak forest: an experimental approach to the effects of fire on humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkt1amurY%3D&md5=b58510f9b3b40fbd1d0cfa2b75cd85c6CAS |

[21]  J. A. González-Pérez, F. J. González-Vila, R. González-Vázquez, M. A. Arias, J. Rodríguez, H. Knicker, Use of multiple biogeochemical parameters to monitor the recovery of soils after forest fires. Org. Geochem. 2008, 39, 940.
Use of multiple biogeochemical parameters to monitor the recovery of soils after forest fires.Crossref | GoogleScholarGoogle Scholar |

[22]  I. Atanassova, M. Teoharov, Variation in lipid abundance and composition in a fire affected hillside from Lyulin mountain, Bulgaria. Agric. Sci. Technol. 2010, 2, 153.

[23]  C. Rumpel, J. A. González-Pérez, G. Bardoux, C. Largeau, F. J. González-Vila, C. Valentin, Composition and reactivity of morphologically distinct charred materials left after slash-and-burn practices in agricultural tropical soils. Org. Geochem. 2007, 38, 911.
Composition and reactivity of morphologically distinct charred materials left after slash-and-burn practices in agricultural tropical soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslWnt7g%3D&md5=7191e93d6795d66467224425fda841eaCAS |

[24]  I. Simkovic, P. Dlapa, S. H. Doerr, J. Mataix-Solera, V. Sasinkova, Thermal destruction of soil water repellency and associated changes to soil organic matter as observed by FTIR spectroscopy. Catena 2008, 74, 205.
Thermal destruction of soil water repellency and associated changes to soil organic matter as observed by FTIR spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1yjt7s%3D&md5=d300346941bed133f81da4f8f8778dc1CAS |

[25]  I. Atanassova, S. H. Doerr, Changes in soil organic compound composition associated with heat-induced increases in soil water repellency. Eur. J. Soil Sci. 2011, 62, 516.
Changes in soil organic compound composition associated with heat-induced increases in soil water repellency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2hs7%2FI&md5=b3092b8fc145580f691082d1c9fdc144CAS |

[26]  S. J. Pyne, P. L. Andrews, R. D. Laven, Introduction to Wildland Fire, 2nd edn 1996 (Wiley: , New York).

[27]  N. A. Moussa, T. Y. Toong, C. A. Garris, Mechanism of smoldering of cellulosic materials, in Sixteenth International symposium on Combustion, 15–20 August 1976, Cambridge, MA 1976, pp. 1447–1457 (The Combustion Institute: Pittsburgh, PA).

[28]  I. Atanassova, S. H. Doerr, Organic compounds of different extractability in total solvent extracts from soils of contrasting water repellency. Eur. J. Soil Sci. 2010, 61, 298.
Organic compounds of different extractability in total solvent extracts from soils of contrasting water repellency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFCmurg%3D&md5=c484a1808026a1b960d0c6605e14c1a4CAS |

[29]  A. T. Wessel, On using the effective contact angle and water drop penetration time for classification of water repellency in dune soils. Earth Surf. Process. Landf. 1988, 13, 555.
On using the effective contact angle and water drop penetration time for classification of water repellency in dune soils.Crossref | GoogleScholarGoogle Scholar |

[30]  S. H. Doerr, L. W. Dekker, C. J. Ritsema, R. A. Shakesby, R. Bryant, Water repellency of soils: the influence of ambient relative humidity Soil Sci. Soc. Am. J. 2002, 66, 401.
Water repellency of soils: the influence of ambient relative humidityCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVCmsLk%3D&md5=c6181ac3c2d3794efd37f62479752ed6CAS |

[31]  J. L. Roy, W. B. McGill, Observations on the chemistry of organic materials in water repellent soils. Int. Turfgrass Soc. Res. J. 2001, 9, 428.

[32]  S. H. Doerr, C. T. Llewellyn, P. Douglas, C. P. Morley, K. A. Mainwaring, C. Haskins, L. Johnsey, C. J. Ritsema, F. Stagnitty, G. Allinson, A. J. D. Ferreira, J. J. Keizer, A. K. Ziogas, J. Diamantis, Extraction of compounds associated with water repellency in sandy soils of different origin. Aust. J. Soil Res. 2005, 43, 225.
Extraction of compounds associated with water repellency in sandy soils of different origin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1ehsro%3D&md5=07481f1a3472c3f25a5dc862900fe5a9CAS |

[33]  S. U. Khan, M. Schnitzer, The retention of hydrophobic organic compounds by humic acid. Geochim. Cosmochim. Acta 1972, 36, 745.
The retention of hydrophobic organic compounds by humic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XltVSjsLY%3D&md5=1abd5978d03ebc18f0ba134ce298cf3fCAS |

[34]  C. Saiz-Jimenez, J. W. de Leeuw, Pyrolysis–gas chromatography–mass spectrometry of soil polysaccharides, soil fulvic acids and polymaleic acid. Org. Geochem. 1984, 6, 287.
Pyrolysis–gas chromatography–mass spectrometry of soil polysaccharides, soil fulvic acids and polymaleic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXls1eqt70%3D&md5=be2218041652fce1f15f7f4f80d09920CAS |

[35]  C. Saiz-Jimenez, Pyrolysis/methylation of soil fulvic acids: benzenecarboxylic acids revisited. Environ. Sci. Technol. 1994, 28, 197.
Pyrolysis/methylation of soil fulvic acids: benzenecarboxylic acids revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXjtVWrsQ%3D%3D&md5=a731405c1180f390ca2e818875dee12aCAS |

[36]  B. R. T. Simoneit, P. M. Medeiros, B. M. Didyk, Combustion products of plastic as indicators for refuse burning in the atmosphere. Environ. Sci. Technol. 2005, 39, 6961.
Combustion products of plastic as indicators for refuse burning in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFymsrw%3D&md5=843da12c481648c54fa85a2a680bd765CAS |

[37]  T. Vinuchakkaravarthy, C. K. Sangeetha, D. Velmurugan, Tris(2,4-di-tert-butylphenyl) phosphate. Acta Crystallogr. Sect. E Struct. Rep. Online 2010, 66, o2207.
Tris(2,4-di-tert-butylphenyl) phosphate.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MrivVGqtQ%3D%3D&md5=d7539dcfaceab1c589ffcc340f858d1aCAS |

[38]  J. Michałowicz, W. Duda, Phenols – sources and toxicity. Pol. J. Environ. Stud. 2007, 16, 347.

[39]  R. K. Sharma, W. G. Chan, J. Wang, B. E. Waymack, J. B. Wooten, J. I. Seeman, M. R. Hajaligol, On the role of peptides in the pyrolysis of amino acids. J. Anal. Appl. Pyr. 2004, 72, 153.
On the role of peptides in the pyrolysis of amino acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1yrsLY%3D&md5=32017404195e19eda468f486a0597ad7CAS |

[41]  R. K. Sharma, J. B. Wooten, V. L. Baliga, X. Lin, W. G. Chan, M. R. Hajaligol, Characterization of chars from pyrolysis of lignin. Fuel 2004, 83, 1469.
Characterization of chars from pyrolysis of lignin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXksFyqu74%3D&md5=98d2f7f2049ea26dae609b7b7005e236CAS |

[42]  F. Shafizadeh, R. H. Furneaux, T. G. Cochran, J. P. Scholl, Y. Sakai, Production of levoglucosan and glucose from pyrolysis of cellulosic materials. J. Appl. Polym. Sci. 1979, 23, 3525.
Production of levoglucosan and glucose from pyrolysis of cellulosic materials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1Cjsrs%3D&md5=efa92293fb8c186f72f083ebf764bd36CAS |

[43]  T. E. McGrath, W. G. Chan, R. Hajaligol, Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. J. Anal. Appl. Pyr 2003, 66, 51.
Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12jurvN&md5=f768b5a94185d1a765ea8484904f654fCAS |

[44]  P. Tinoco, G. Almendros, J. Sanz, R. González-Vázquez, F. J. González-Vila, Molecular descriptors of the effect of fire on soils under pine forest in two continental Mediterranean soils. Org. Geochem. 2006, 37, 1995.
Molecular descriptors of the effect of fire on soils under pine forest in two continental Mediterranean soils.Crossref | GoogleScholarGoogle Scholar |

[45]  E. Eckmeier, G. L. B. Wiesenberg, Short-chain n-alkanes (C16–20) in ancient soil are useful molecular markers for prehistoric biomass burning. J. Arch. Sci. 2009, 36, 1590.
Short-chain n-alkanes (C16–20) in ancient soil are useful molecular markers for prehistoric biomass burning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFenur8%3D&md5=1e8f81131413097dc1c27abcfea39b34CAS |

[46]  G. L. B. Wiesenberg, E. Lehndorff, L. Schwark, Thermal degradation of rye and maize straw: lipid pattern changes as a function of temperature. Org. Geochem. 2009, 40, 167.
Thermal degradation of rye and maize straw: lipid pattern changes as a function of temperature.Crossref | GoogleScholarGoogle Scholar |

[47]  J. M. De la Rosa, J. A. González-Pérez, R. González-Vázquez, H. Knicker, E. López-Capel, D. A. C. Manning, F. J. González-Vila, Use of pyrolysis/GC-MS combined with thermal analysis to monitor fire induced C and N forms changes in forest soil organic matter. Catena 2008, 74, 296.
Use of pyrolysis/GC-MS combined with thermal analysis to monitor fire induced C and N forms changes in forest soil organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1Kgtr8%3D&md5=735fa0e9c303413e298d219dd9fa7b97CAS |

[48]  J. Kaal, A. Martínez-Cortizas, K. G. J. Nierop, P. Buurman, A detailed pyrolysis-GC/MS analysis of a black carbon-rich acidic colluvial soil (Atlantic ranker) from NW Spain. Appl. Geochem. 2008, 23, 2395.
A detailed pyrolysis-GC/MS analysis of a black carbon-rich acidic colluvial soil (Atlantic ranker) from NW Spain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs12ls7c%3D&md5=59cdadfd1d582c13e773a5c011f75b50CAS |

[49]  H. R. Schulten, M. Schnitzer, Chemical model structures for soil organic matter and soils. Soil Sci. 1997, 162, 115.
Chemical model structures for soil organic matter and soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhvFGntbo%3D&md5=a325e8edcaac0f3491a7d929859876c0CAS |

[50]  S. Derenne, C. Largeau, F. Taulelle, Occurrence of nonhydrolysable amides in the macromolecular constituent of Scenedesmus quadricauda cell wall as revealed by 15N NMR: origin of n-alkylnitriles in pyrolysates of ultralaminae-containing kerogens. Geochim. Cosmochim. Acta 1993, 57, 851.
Occurrence of nonhydrolysable amides in the macromolecular constituent of Scenedesmus quadricauda cell wall as revealed by 15N NMR: origin of n-alkylnitriles in pyrolysates of ultralaminae-containing kerogens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovV2ltLw%3D&md5=cedfbb238528d78379d9a88f1906d4f5CAS |

[51]  B. R. T. Simoneit, A. I. Rushdi, M. R. bin Abas, B. M. Didyk, Alkyl amides and nitriles as novel tracers for biomass burning. Environ. Sci. Technol. 2003, 37, 16.
Alkyl amides and nitriles as novel tracers for biomass burning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XltlWisbo%3D&md5=b419e26f5bf3d74fda0b31921cc8c982CAS |

[52]  J. Rubio, J. A. Kitchener, The mechanism of adsorption of polyethylene oxide flocculant on silica. J. Coll. Interf. Sci. 1976, 57, 132.
The mechanism of adsorption of polyethylene oxide flocculant on silica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsVSktLw%3D&md5=4d452928b7d99e8c7ace901e0c869df6CAS |

[53]  W. J. Jaynes, S. A. Boyd, Hydrophobicity of siloxane surfaces in smectites as revealed by aromatic hydrocarbon adsorption from water. Clays Clay Miner. 1991, 39, 428.
Hydrophobicity of siloxane surfaces in smectites as revealed by aromatic hydrocarbon adsorption from water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXht1Kisrg%3D&md5=130c85024b29c40eaa66884ee3c9b9a5CAS |

[54]  M. E. Schrader, S. Yariv, Wettability of clay minerals. J. Coll. Interf. Sci. 1990, 136, 85.
Wettability of clay minerals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFertLw%3D&md5=fa53b0daea33a23f3d8954cd30736d89CAS |

[55]  L. J. Michot, F. Villieras, M. Francois, J. Yvon, R. LeDred, J. M. Cases, The structural microscopic hydrophilicity of talc. Langmuir 1994, 10, 3765.
The structural microscopic hydrophilicity of talc.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntlKltrk%3D&md5=0cfa704689e7fbde209063004aedbb12CAS |

[56]  H. Malandrini, F. Clauss, S. Partyka, J. M. Douillard, Interactions between talc particles and water and organic solvents J. Colloid Interface Sci. 1997, 194, 183.
Interactions between talc particles and water and organic solventsCrossref | GoogleScholarGoogle Scholar |

[57]  G. Certini, Effects of fire on properties of forest soils: a review. Oecologia 2005, 143, 1.
Effects of fire on properties of forest soils: a review.Crossref | GoogleScholarGoogle Scholar |

[58]  B. W. van Wilgen, N. Govencer, H. C. Briggs, The contribution of fire research to fire management: a critical review of a long-term experiment in the Kruger National Park, South Africa. Int. J. Wildland Fire 2007, 16, 519.
The contribution of fire research to fire management: a critical review of a long-term experiment in the Kruger National Park, South Africa.Crossref | GoogleScholarGoogle Scholar |