Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Glyoxal secondary organic aerosol chemistry: effects of dilute nitrate and ammonium and support for organic radical–radical oligomer formation

Jeffrey R. Kirkland A , Yong B. Lim A , Yi Tan A C , Katye E. Altieri B and Barbara J. Turpin A D
+ Author Affiliations
- Author Affiliations

A Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA.

B Department of Geosciences, Princeton University, Princeton, NJ 08540, USA.

C Present address: The Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

D Corresponding author. Email: turpin@envsci.rutgers.edu

Environmental Chemistry 10(3) 158-166 https://doi.org/10.1071/EN13074
Submitted: 30 March 2013  Accepted: 25 May 2013   Published: 28 June 2013

Environmental context. Atmospheric waters (clouds, fogs and wet aerosols) are media in which gases can be converted into particulate matter. This work explores aqueous transformations of glyoxal, a water-soluble gas with anthropogenic and biogenic sources. Results provide new evidence in support of previously proposed chemical mechanisms. These mechanisms are beginning to be incorporated into transport models that link emissions to air pollution concentrations and behaviour.

Abstract. Glyoxal (GLY) is ubiquitous in the atmosphere and an important aqueous secondary organic aerosol (SOA) precursor. At dilute (cloud-relevant) organic concentrations, OH radical oxidation of GLY has been shown to produce oxalate. GLY has also been used as a surrogate species to gain insight into radical and non-radical reactions in wet aerosols, where organic and inorganic concentrations are very high (in the molar region). The work herein demonstrates, for the first time, that tartarate forms from GLY + OH. Tartarate is a key product in a previously proposed organic radical–radical reaction mechanism for oligomer formation from GLY oxidation. Previously published model predictions that include this GLY oxidation pathway suggest that oligomers are major products of OH radical oxidation at the high organic concentrations found in wet aerosols. The tartarate measurements herein provide support for this proposed oligomer formation mechanism. This paper also demonstrates, for the first time, that dilute (cloud or fog-relevant) concentrations of inorganic nitrogen (i.e. ammonium and nitrate) have little effect on the GLY + OH chemistry leading to oxalate formation in clouds. This, and results from previous experiments conducted with acidic sulfate, increase confidence that the currently understood dilute GLY + OH chemistry can be used to predict GLY SOA formation in clouds and fogs. It should be recognised that organic–inorganic interactions can play an important role in droplet evaporation chemistry and in wet aerosols. The chemistry leading to SOA formation in these environments is complex and remains poorly understood.


References

[1]  A. G. Carlton, B. J. Turpin, H. J. Lim, K. E. Altieri, S. P. Seitzinger, Link between isoprene and SOA: pyruvic acid oxidation yields and low volatility organic acids in clouds. Geophys. Res. Lett. 2006, 33, L06822.
Link between isoprene and SOA: pyruvic acid oxidation yields and low volatility organic acids in clouds.Crossref | GoogleScholarGoogle Scholar |

[2]  M. J. Perri, S. P. Seitzinger, B. J. Turpin, Secondary organic aerosol production from aqueous photooxidation of glycolaldehyde: laboratory experiments. Atmos. Environ. 2009, 43, 1487.
Secondary organic aerosol production from aqueous photooxidation of glycolaldehyde: laboratory experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFemtLo%3D&md5=57222d3d34ec18f71120daada32ba2b8CAS |

[3]  K. E. Altieri, A. G. Carlton, H. J. Lim, B. J. Turpin, S. P. Seitzinger, Evidence for oligomer formation in clouds: reactions of isoprene oxidation products. Environ. Sci. Technol. 2006, 40, 4956.
Evidence for oligomer formation in clouds: reactions of isoprene oxidation products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmslaqsrg%3D&md5=223633d12584346acb444ec9baab548fCAS | 16955892PubMed |

[4]  Y. Sun, Q. Zhang, C. Anastasio, J. Sun, Insights into secondary organic aerosol formed via aqueous-phase reactions of phenolic compounds based on high resolution mass spectrometry. Atmos. Chem. Phys. 2010, 10, 4809.
Insights into secondary organic aerosol formed via aqueous-phase reactions of phenolic compounds based on high resolution mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12qsrrE&md5=d89767e6c4557ac81638b59e90402a43CAS |

[5]  J. D. Surratt, A. W. H. Chan, N. C. Eddingsaas, M. N. Chan, C. L. Loza, A. J. Kwan, S. P. Hersey, R. C. Flagan, P. O. Wennberg, J. H. Seinfeld, Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc. Natl. Acad. Sci. USA 2010, 107, 6640.
Reactive intermediates revealed in secondary organic aerosol formation from isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFSjsL0%3D&md5=219fe201c6efbe8bec7657581ad5c79fCAS | 20080572PubMed |

[6]  M. M. Galloway, P. S. Chhabra, A. W. H. Chan, J. D. Surratt, R. C. Flagan, J. H. Seinfeld, F. N. Keutsch, Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions. Atmos. Chem. Phys. 2009, 9, 3331.
Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1amsb4%3D&md5=6d92e66c31822e836c238347726bab66CAS |

[7]  I. El Haddad, Y. Liu, L. Nieto-Gligorovski, V. Michaud, B. Temime-Roussel, E. Quivet, N. Marchand, K. Sellegri, A. Monod, In-cloud processes of methacrolein under simulated conditions – Part 2: formation of secondary organic aerosol. Atmos. Chem. Phys. 2009, 9, 5107.
In-cloud processes of methacrolein under simulated conditions – Part 2: formation of secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGhsr%2FL&md5=9733556f0599acd6e9bb7031d6709a0cCAS |

[8]  A. K. Y. Lee, R. Zhao, S. S. Gao, J. P. D. Abbatt, Aqueous phase OH oxidation of glyoxal: application of a novel analytical approach employing aerosol mass spectrometry and complementary off-line techniques. J. Phys. Chem. A 2011, 115, 10 517.
Aqueous phase OH oxidation of glyoxal: application of a novel analytical approach employing aerosol mass spectrometry and complementary off-line techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFelu7%2FO&md5=ffae0ee20ba40246ac13239466ba4b0aCAS |

[9]  D. L. Ortiz-Montalvo, Y. B. Lim, M. J. Perri, S. P. Seitzinger, B. J. Turpin, Volatility and yield of glycolaldehyde SOA formed through aqueous photochemistry and droplet evaporation. Aerosol Sci. Technol. 2012, 46, 1002.
Volatility and yield of glycolaldehyde SOA formed through aqueous photochemistry and droplet evaporation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFagsL0%3D&md5=993d6da51f06760e3b1680a385253118CAS |

[10]  Y. Zhou, H. Zhang, H. M. Parikh, E. H. Chen, W. Rattanavaraha, E. P. Rosen, W. Wang, R. M. Kamens, Secondary organic aerosol formation from xylenes and mixtures of toluene and xylenes in an atmospheric urban hydrocarbon mixture: water and particle seed effects (II). Atmos. Environ. 2011, 45, 3882.
Secondary organic aerosol formation from xylenes and mixtures of toluene and xylenes in an atmospheric urban hydrocarbon mixture: water and particle seed effects (II).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFOgsrw%3D&md5=c9e1cc03e5d99df2c1fe20023a695aebCAS |

[11]  R. M. Kamens, H. Zhang, E. H. Chen, Y. Zhou, H. M. Parikh, R. L. Wilson, K. E. Galloway, E. P. Rosen, Secondary organic aerosol formation from toluene in an atmospheric hydrocarbon mixture: water and particle seed effects. Atmos. Environ. 2011, 45, 2324.
Secondary organic aerosol formation from toluene in an atmospheric hydrocarbon mixture: water and particle seed effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvVWktbs%3D&md5=70dcfaa60ebb5bdf1b9cec81061bbb5dCAS |

[12]  J. D. Blando, B. J. Turpin, Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmos. Environ. 2000, 34, 1623.
Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitFOjt7c%3D&md5=0d4ea5e801d14c0a230234974956c55dCAS |

[13]  B. Ervens, B. Turpin, R. Weber, Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field, and model studies. Atmos. Chem. Phys. 2011, 11, 11 069.
Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field, and model studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFOisLw%3D&md5=181a6701e42d0b51b62842e66c2a2585CAS |

[14]  J. H. Seinfeld, J. F. Pankow, Organic atmospheric particulate material. Annu. Rev. Phys. Chem. 2003, 54, 121.
Organic atmospheric particulate material.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFSgs7s%3D&md5=9937f341a2cdeed5352c5cf2bb1f5d1dCAS | 12524426PubMed |

[15]  M. Jang, R. M. Kamens, K. B. Leach, M. R. Strommen, A thermodynamic approach using group contribution methods to model the partitioning of semivolatile organic compounds on atmospheric particulate matter. Environ. Sci. Technol. 1997, 31, 2805.
A thermodynamic approach using group contribution methods to model the partitioning of semivolatile organic compounds on atmospheric particulate matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlsFymtLw%3D&md5=98cef71f3f1db9184e8e18a03835a0e0CAS |

[16]  T. M. Fu, D. J. Jacob, F. Wittrock, J. P. Burrows, M. Vrekoussis, M. V. Henze, Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res. 2008, 113, D15303.
Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols.Crossref | GoogleScholarGoogle Scholar |

[17]  S. Myriokefalitakis, K. Tsigaridis, N. Mihalopoulos, J. Sciare, A. Nenes, K. Kawamura, A. Segers, M. Kanakidou, In-cloud oxalate formation in the global troposphere: a 3-D modeling study. Atmos. Chem. Phys. 2011, 11, 5761.
In-cloud oxalate formation in the global troposphere: a 3-D modeling study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WjtrvI&md5=8d434026d1ed25e883a05d9833fc95acCAS |

[18]  G. Lin, J. E. Penner, S. Sillman, D. Taraborrelli, J. Lelieveld, Global modeling of SOA formation from dicarbonyls, epoxides, organic nitrates, and peroxides. Atmos. Chem. Phys. 2012, 12, 4743.
Global modeling of SOA formation from dicarbonyls, epoxides, organic nitrates, and peroxides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFGkt7%2FN&md5=ed4744e4def6949c63f9f67b9e4dc1aaCAS |

[19]  J. Liu, L. H. Horowitz, S. Fan, A. G. Carlton, H. Levy, Global in-cloud production of secondary organic aerosols: implementation of a detailed chemical mechanism in the GFDL atmospheric model AM3. J. Geophys. Res., D, Atmospheres 2012, 117, D15303.
Global in-cloud production of secondary organic aerosols: implementation of a detailed chemical mechanism in the GFDL atmospheric model AM3.Crossref | GoogleScholarGoogle Scholar |

[20]  A. G. Carlton, B. J. Turpin, K. E. Altieri, S. P. Seitzinger, R. Mathur, S. J. Roselle, R. J. Weber, CMAQ Model performance enhanced when in-cloud secondary organic aerosol is included: comparisons of organic carbon predictions with measurements. Environ. Sci. Technol. 2008, 42, 8798.
CMAQ Model performance enhanced when in-cloud secondary organic aerosol is included: comparisons of organic carbon predictions with measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCiu7rM&md5=2da2af7a2b6b0cf9f5b15be289466bbeCAS | 19192800PubMed |

[21]  Y. B. Lim, Y. Tan, M. J. Perri, S. P. Seitzinger, B. J. Turpin, Aqueous chemistry and its role in secondary organic aerosol (SOA) formation. Atmos. Chem. Phys. 2010, 10, 10 521.
Aqueous chemistry and its role in secondary organic aerosol (SOA) formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Kjtb0%3D&md5=a1cf26b034855d2be78ffab4028190d1CAS |

[22]  M. D. Petters, S. M. Kreidenweis, A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 2007, 7, 1961.
A single parameter representation of hygroscopic growth and cloud condensation nucleus activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1eitbY%3D&md5=726b170f5abbcb8906c5fc52c94579a4CAS |

[23]  R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, J. Troe, Evaluated kinetic and photochemical data for atmospheric chemistry: volume II – gas phase reactions of organic species. Atmos. Chem. Phys. 2006, 6, 3625.
Evaluated kinetic and photochemical data for atmospheric chemistry: volume II – gas phase reactions of organic species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2hs7bF&md5=024d153f9381c8cbdcdf5cd3c0a22fe1CAS |

[24]  A. Guenther, T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, C. Geron, Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181.
Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtV2hs7vF&md5=a8ee5544f67ae8808632485303e1cb26CAS |

[25]  L. Y. Yeung, M. J. Pennino, A. M. Miller, M. J. Elrod, Kinetic and mechanistic studies of the atmospheric oxidation of alkynes. J. Phys. Chem. 2005, 109, 1879.
Kinetic and mechanistic studies of the atmospheric oxidation of alkynes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1ejs74%3D&md5=2cbe1da8adc233556ab3a0ee9af7a3c1CAS |

[26]  F. Wittrock, A. Richter, H. Oetjen, J. P. Burrows, M. Kanakidou, S. Myriokefalitakis, R. Volkamer, S. Beirle, U. Platt, T. Wagner, Simultaneous global observations of glyoxal and formaldehyde from space. Geophys. Res. Lett. 2006, 33, L16804.
Simultaneous global observations of glyoxal and formaldehyde from space.Crossref | GoogleScholarGoogle Scholar |

[27]  M. Rinaldi, S. Decesari, C. Carbone, E. Finessi, S. Fuzzi, D. Ceburnis, C. D. O’Dowd, J. Sciare, J. P. Burrows, M. Vrekoussis, B. Ervens, K. Tsigaridis, M. C. Facchini, Evidence of a natural marine source of oxalic acid and a possible link to glyoxal. J. Geophys. Res. 2011, 116, D16204.
Evidence of a natural marine source of oxalic acid and a possible link to glyoxal.Crossref | GoogleScholarGoogle Scholar |

[28]  X. Zhou, K. Mopper, Apparent partition coefficients of 15 carbonyl compounds between air and seawater and between air and freshwater; implications for air–sea exchange. Environ. Sci. Technol. 1990, 24, 1864.
Apparent partition coefficients of 15 carbonyl compounds between air and seawater and between air and freshwater; implications for air–sea exchange.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlvFOgurs%3D&md5=675ecf25e8b356ddf3186e00f54546e1CAS |

[29]  K. Matsumoto, S. Kawai, M. Igawa, Dominant factors controlling concentrations of aldehydes in rain, fog, dew water, and in the gas phase. Atmos. Environ. 2005, 39, 7321.
Dominant factors controlling concentrations of aldehydes in rain, fog, dew water, and in the gas phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGht7rM&md5=fb5d22870fbccaf513ea7996b34d8b83CAS |

[30]  M. Igawa, J. W. Munger, M. R. Hoffmann, Analysis of aldehydes in cloud- and fogwater samples by HPLC with a postcolumn reaction detector. Environ. Sci. Technol. 1989, 23, 556.
Analysis of aldehydes in cloud- and fogwater samples by HPLC with a postcolumn reaction detector.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsl2itro%3D&md5=d65ad2ce5785a7d04283589d8afdf44bCAS |

[31]  S. A. Epstein, S. A. Nizkorodov, A comparison of the chemical sinks of atmospheric organics in the gas and aqueous phase. Atmos. Chem. Phys. 2012, 12, 8205.
A comparison of the chemical sinks of atmospheric organics in the gas and aqueous phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlOls70%3D&md5=6d0e3a1c2d78fd3c101591cbb363a130CAS |

[32]  A. G. Carlton, B. J. Turpin, K. E. Altieri, S. Seitzinger, A. Reff, H. J. Lim, B. Ervens, Atmospheric oxalic acid and SOA production from glyoxal: results of aqueous photooxidation experiments. Atmos. Environ. 2007, 41, 7588.
Atmospheric oxalic acid and SOA production from glyoxal: results of aqueous photooxidation experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yis7vJ&md5=3f93353ef136482c3558eac9b47e7e72CAS |

[33]  Y. Tan, M. J. Perri, S. P. Seitzinger, B. J. Turpin, Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol. Environ. Sci. Technol. 2009, 43, 8105.
Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1arur7J&md5=ce1cb1ea6cdb61deb7dd1fd88ad9b8bbCAS | 19924930PubMed |

[34]  B. Nozière, P. Dziedzic, A. Cordova, Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by ammonium ions (NH4+). J. Phys. Chem. A 2009, 113, 231.
Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by ammonium ions (NH4+).Crossref | GoogleScholarGoogle Scholar | 19118483PubMed |

[35]  M. J. Perri, Y. B. Lim, S. P. Seitzinger, B. J. Turpin, Organosulfates from glycolaldehyde in aqueous aerosols and clouds: laboratory studies. Atmos. Environ. 2010, 44, 2658.
Organosulfates from glycolaldehyde in aqueous aerosols and clouds: laboratory studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt12ltLs%3D&md5=3e7dbf2c685dfef0a50f566b735b2791CAS |

[36]  B. Nozière, S. Ekstrom, T. Alsberg, S. Holmstrom, Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols. Geophys. Res. Lett. 2010, 37, L05806.
Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols.Crossref | GoogleScholarGoogle Scholar |

[37]  E. L. Shapiro, J. Szprengiel, N. Sareen, C. N. Jen, M. R. Giordano, V. F. McNeill, Light-absorbing secondary organic aerosol material formed by glyoxal in aqueous aerosol mimics. Atmos. Chem. Phys. 2009, 9, 2289.
Light-absorbing secondary organic aerosol material formed by glyoxal in aqueous aerosol mimics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVGjtL0%3D&md5=17916b4adcac944c9fd814804c96967fCAS |

[38]  J. M. Waldman, J. W. Munger, D. J. Jacob, R. C. Flagan, J. J. Morgan, M. R. Hoffman, Chemical composition of acid fog. Science 1982, 128, 677.
Chemical composition of acid fog.Crossref | GoogleScholarGoogle Scholar |

[39]  Q. Zhang, J. L. Jimenez, M. R. Canagaratna, J. D. Allan, H. Coe, I. Ulbrich, M. R. Alfarra, A. Takami, A. M. Middlebrook, Y. L. Sun, K. Dzepina, E. Dunlea, K. Docherty, P. F. DeCarlo, D. Salcedo, T. Onasch, J. T. Jayne, T. Miyoshi, A. Shimono, S. Hatakeyama, N. Takegawa, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, P. Williams, K. Bower, R. Bahreini, L. Cottrell, R. J. Griffin, J. Rautiainen, J. Y. Sun, Y. M. Zhang, D. R. Worsnop, Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically influenced northern hemisphere midlatitudes. Geophys. Res. Lett. 2007, 34, L13801.
Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically influenced northern hemisphere midlatitudes.Crossref | GoogleScholarGoogle Scholar |

[40]  Q. Zhang, C. Anastasio, Chemistry of fog waters in California’s Central Valley. Part 3: concentrations and speciation of organic and inorganic nitrogen. Atmos. Environ. 2001, 35, 5629.
Chemistry of fog waters in California’s Central Valley. Part 3: concentrations and speciation of organic and inorganic nitrogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXosVGjuro%3D&md5=fd48b311444f9100f5d9435c9f57881cCAS |

[41]  K. E. Altieri, B. J. Turpin, S. P. Seitzinger, Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry. Atmos. Chem. Phys. 2009, 9, 2533.
Oligomers, organosulfates, and nitrooxy organosulfates in rainwater identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVGjtbc%3D&md5=f5aff397fb1b9917a42f02c807b0250dCAS |

[42]  L. R. Mazzoleni, B. M. Ehrmann, X. Shen, A. G. Marshall, J. L. Collett, Water-soluble atmospheric organic matter in fog: exact masses and chemical formula identification by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. Environ. Sci. Technol. 2010, 44, 3690.
Water-soluble atmospheric organic matter in fog: exact masses and chemical formula identification by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVaiu7o%3D&md5=034fdac097066014223c5fb12c4939eaCAS | 20397689PubMed |

[43]  D. L. Jacob, Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate. J. Geophys. Res. 1986, 91, 9807.
Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlsFKntLc%3D&md5=3f0ce66626bb768f3d3c5225e8bc47a2CAS |

[44]  N. V. Klassen, D. Marchington, H. C. E. McGowan, H2O2 determination by the I3– method and by KMnO4 titration. Anal. Chem. 1994, 66, 2921.
H2O2 determination by the I3 method and by KMnO4 titration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsVOqsLw%3D&md5=99493d030395660e7493cd9c52b4c19fCAS |

[45]  Y. Tan, A. G. Carlton, S. P. Seitzinger, B. J. Turpin, SOA from methylglyoxal in clouds and wet aerosols: measurement and prediction of key products. Atmos. Environ. 2010, 44, 5218.
SOA from methylglyoxal in clouds and wet aerosols: measurement and prediction of key products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlGntL7I&md5=4843c23d15d03b6e855164b831007bacCAS |

[46]  S. P. Seitzinger, R. M. Styles, R. Lauck, M. A. Mazurek, Atmospheric pressure mass spectrometry: a new analytical chemical characterization method for dissolved organic matter in rainwater. Environ. Sci. Technol. 2003, 37, 131.
Atmospheric pressure mass spectrometry: a new analytical chemical characterization method for dissolved organic matter in rainwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovV2ltLo%3D&md5=ce8b825ad45c400a8f894a62ed8faabaCAS | 12542301PubMed |

[47]  M. C. Kido Soule, K. Longnecker, S. J. Giovannoni, E. B. Kujawinski, Impact of instrument and experiment parameters on reproducibility of ultrahigh resolution ESI FT-ICR mass spectra of natural organic matter. Org. Geochem. 2010, 41, 725.
Impact of instrument and experiment parameters on reproducibility of ultrahigh resolution ESI FT-ICR mass spectra of natural organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosF2ltr0%3D&md5=99f7fb46bd5fed6b4a13ca132193f7c9CAS |

[48]  A. D. Southam, T. G. Payne, H. J. Cooper, T. N. Arvanitis, M. R. Viant, Dynamic range and mass accuracy of wide-scan direct infusion nanoelectrospray Fourier Transform Ion Cyclotron Resonance mass spectrometry-based metabolomics increased by the spectral stitching method. Anal. Chem. 2007, 79, 4595.
Dynamic range and mass accuracy of wide-scan direct infusion nanoelectrospray Fourier Transform Ion Cyclotron Resonance mass spectrometry-based metabolomics increased by the spectral stitching method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsVSgurw%3D&md5=04162ae1c2b5e8b4bdb3089ac27718c0CAS | 17511421PubMed |

[49]  D. Mantini, F. Petrucci, D. Pieragostino, P. Del Boccio, M. Di Nicola, C. Di Ilio, G. Federici, P. Sacchetta, S. Comani, A. Urbani, LIMPIC: a computational method for the separation of protein MALDI-TOF-MS signals from noise. BMC Bioinformatics 2007, 8, 101.
LIMPIC: a computational method for the separation of protein MALDI-TOF-MS signals from noise.Crossref | GoogleScholarGoogle Scholar | 17386085PubMed |

[50]  M. P. Bhatia, S. B. Das, K. Longnecker, M. A. Charette, E. B. Kujawinski, Molecular characterization of dissolved organic matter associated with the Greenland ice sheet. Geochim. Cosmochim. Acta 2010, 74, 3768.
Molecular characterization of dissolved organic matter associated with the Greenland ice sheet.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlGjsL4%3D&md5=5defe6d25fadec4bd852448dc409ded6CAS |

[51]  P. Warneck, The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds. Phys. Chem. Chem. Phys. 1999, 1, 5471.
The relative importance of various pathways for the oxidation of sulfur dioxide and nitrogen dioxide in sunlit continental fair weather clouds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1aksw%3D%3D&md5=3b5862ba6dbd67d20296fc5f358a9dc1CAS |

[52]  H. J. Lim, A. G. Carlton, B. J. Turpin, Isoprene forms secondary organic aerosol through cloud processing: model simulations. Environ. Sci. Technol. 2005, 39, 4441.
Isoprene forms secondary organic aerosol through cloud processing: model simulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVWrsrg%3D&md5=555691f199f9159e51b9ddbac358d181CAS | 16047779PubMed |

[53]  J. Mack, J. Bolton, Photochemistry of nitrite and nitrate in aqueous solution: a review. J. Photochem. Photobiol. Chem. 1999, 128, 1.
Photochemistry of nitrite and nitrate in aqueous solution: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvVyqsbY%3D&md5=20af1c71e648ace24f5b3a2aa6135d77CAS |

[54]  P. Neta, R. E. Huie, Rate constants for reactions of NO3 radicals in aqueous solutions. J. Phys. Chem. 1986, 90, 4644.
Rate constants for reactions of NO3 radicals in aqueous solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xlt1WlsrY%3D&md5=2ba444882fba75b557fb94d26dd5e34cCAS |

[55]  Y. B. Lim, P. J. Ziemann, Products and mechanism of secondary organic aerosol formation from reactions with n-alkanes with OH radicals in the presence of NOX. Environ. Sci. Technol. 2005, 39, 9229.
Products and mechanism of secondary organic aerosol formation from reactions with n-alkanes with OH radicals in the presence of NOX.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFKltr3O&md5=5f111704cfc078fa5fd88d3aafb6a09fCAS | 16382947PubMed |

[56]  H. Gong, A. Matsunaga, P. J. Ziemann, Products and mechanism of secondary organic aerosol formation from reactions of linear alkenes with NO3 radicals. J. Phys. Chem. A 2005, 109, 4312.
Products and mechanism of secondary organic aerosol formation from reactions of linear alkenes with NO3 radicals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFCqsrY%3D&md5=077ff6c9ca41059b5459f7290d7aa067CAS | 16833761PubMed |

[57]  B. M. Connelly, D. O. De Haan, M. A. Tolbert, Heterogeneous glyoxal oxidation: a potential source of secondary organic aerosol. J. Phys. Chem. A 2012, 116, 6180.
Heterogeneous glyoxal oxidation: a potential source of secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls12jsbs%3D&md5=7aabce6f32a27454613b464eb473f55bCAS | 22510110PubMed |

[58]  D. O. De Haan, A. L. Corrigan, K. W. Smith, D. R. Stroik, J. J. Turley, F. E. Lee, M. A. Tolbert, J. L. Jimenez, K. E. Cordova, G. R. Ferrell, Secondary organic aerosol-forming reactions of glyoxal with amino acids. Environ. Sci. Technol. 2009, 43, 2818.
Secondary organic aerosol-forming reactions of glyoxal with amino acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFyru7Y%3D&md5=b559159cd361dca190767101c9e49ac2CAS | 19475956PubMed |

[59]  Q. Zhang, C. Anastasio, Free and combined amino compounds in atmospheric fine particles (PM2.5) and fog waters from northern California. Atmos. Environ. 2003, 37, 2247.
Free and combined amino compounds in atmospheric fine particles (PM2.5) and fog waters from northern California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVCrs7k%3D&md5=fbc09e3a0646ba8ddbdd8dec947d1497CAS |

[60]  N. Sareen, A. N. Schwier, E. L. Shapiro, D. Mitroo, V. F. McNeill, Secondary organic material formed by methylglyoxal in aqueous aerosol mimics. Atmos. Chem. Phys. 2010, 10, 997.
Secondary organic material formed by methylglyoxal in aqueous aerosol mimics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsl2rtLo%3D&md5=f7015cc52ff11993b98dcaa3e2e60de7CAS |